This study carried out a novel duplex surface treatment on aluminum alloy base to explore the potential improvement of wear and corrosion resistance. Regular arrayed dimple surface texture (DST) and groove surface texture (GST) were fabricated by using laser processing on 6065 aluminum alloy matrix (6065Al). Electrochemical deposition of Ni and Graphene/Ni coatings on textured surface was then performed in electrolytes with concentrations of 0, 0.5, 1 and 1.5 mg graphene. Surface morphology such as diameter of dimple and width of groove measured by C-PSCN stereo microscope presents addition of graphene helps to refine and homogenize the coating. Corrosion resistant properties of the duplex surface treatment were examined by electrochemical corrosion tests and wear resistant properties were tested by UMT-Tribo Lab friction and wear tester in a dry sliding condition at room temperature. Electrochemical corrosion tests results show that the corrosion resistance of samples is related to the specific surface texture and the dimple texture can improve the electrical corrosion parameters, such as the electrode potential, greatly. Friction and wear tests show that the textured Gr/Ni electroplating coating with the 1.5 mg graphene content has best wear properties under vertical friction and each index, such as the coefficient of friction and wear trace width, are superior to other conditions of samples.
Thermoplastic microforming not only breaks through the bottleneck in the manufacture of metallic glasses, but also offers alluring prospects in microengineering applications. The microformability of metallic glasses decreases with a reduction in the mold size owing to the interfacial size effect, which seriously hinders their large-scale applications. Here, ultrasonic vibration was introduced as an effective method to improve the microformability of metallic glasses, owing to its capabilities of improving the material flow and reducing the interfacial friction. The results reveal that the microformability of supercooled Zr35Ti30Cu8.25Be26.75 metallic glasses is conspicuously enhanced by comparison with those under quasi-static loading. The more intriguing finding is that the microformability of the Zr-based metallic glasses can be further improved by tuning the amplitude of the ultrasonic vibration. The physical origin of the above scenario is understood, in depth, on the basis of ultrasonic vibration-assisted material flow, as demonstrated by the finite element method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.