The A-DA'D-A fused-ring electron acceptors with an angular fusion mode and electron-deficient core has significantly boosted organic photovoltaic efficiency.Here, the intrinsic role of the peculiar structure is revealed by comparing representative A-DA'D-A acceptor Y6 with its A-D-A counterparts having different fusion modes. Owing to the more delocalized HOMO and deeper LUMO level, Y6 exhibits stronger and redshifted absorption relative to the linear and angular fused A-D-A acceptors, respectively. Moreover, the change from linear to angular fusion substantially reduces the electron-vibration couplings, which is responsible for the faster exciton diffusion, exciton dissociation, and electron transport for Y6 than the linear fused A-D-A acceptor. Notably, the electron-vibration coupling for exciton dissociation is further decreased by introducing the electron-deficient core, thus contributing to the efficient charge generation under low driving forces in the Y6-based devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.