The effects of γ-irradiation on potassium dihydrogen phosphate crystals containing arsenic impurities are investigated with different optical diagnostics, including UV-VIS absorption spectroscopy, photo-thermal common-path interferometer and photoluminescence spectroscopy. The optical absorption spectra indicate that a new broad absorption band near 260 nm appears after γ-irradiation. It is found that the intensity of absorption band increases with the increasing irradiation dose and arsenic impurity concentration. The simulation of radiation defects show that this absorption is assigned to the formation of AsO₄⁴⁻ centers due to arsenic ions substituting for phosphorus ions. Laser-induced damage threshold test is conducted by using 355 nm nanosecond laser pulses. The correlations between arsenic impurity concentration and laser induced damage threshold are presented. The results indicate that the damage performance of the material decreases with the increasing arsenic impurity concentration. Possible mechanisms of the irradiation-induced defects formation under γ-irradiation of KDP crystals are discussed.
Quantum chemistry calculations based on the density functional theory (DFT) are carried out to investigate the reaction mechanism of C2F5I synthesis catalyzed by activated carbon. The possible adsorption configurations of fluorocarbon intermediates are analyzed carefully. Also, the related transition states and reaction pathway are analyzed. According to calculation, firstly, the dehydrofluorination of C2HF5, as the rate-determining step, is catalyzed by the carboxyl acid groups. Secondly, the tetrafluoroethylidene radicals disproportionate on graphite (001) surface instead of rearrangement or dimerization. Next, the fluorine abstractions between fluorocarbon intermediates over graphite (001) surfaces proceed successfully. Finally, the desorbed pentafluoroethyl abstracts iodine atom from molecular iodine spontaneously to afford C2F5I. In adition, our calculations reveal that the carbon deposit in experiment is caused by the fluorine abstraction from fluoroethinyl. The suggested mechanism corresponds with our calculations and available experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.