Background
Kai-Xin-San (KXS) has been reported to have a good curative impact on dementia. The purpose of the study was to determine whether KXS might ameliorate cognitive deficits in APP/PS1 mice and to evaluate its neuroprotective mechanism.
Methods
APP/PS1 mice were employed as an AD animal model; Aβ1–42 and KXS-containing serum were used in HT22 cells. Four different behavioral tests were used to determine the cognitive ability of mice. Nissl staining was utilized to detect hippocampal neuron changes. ROS, SOD, and MDA were used to detect oxidative stress levels. Transmission electron microscopy and Western blot were used to evaluate mitochondrial morphology, mitochondrial division, and fusion state. Western blotting and immunofluorescence identified PSD95, BDNF, NGF, SYN, SIRT3, and NLRP3 inflammasome levels.
Results
The results indicated that KXS protected APP/PS1 mice against cognitive impairments. KXS suppressed neuronal apoptosis and oxidative stress among APP/PS1 mice. KXS and KXS-containing serum improved mitochondrial dysfunction and synaptic and neurotrophic factors regarding APP/PS1 mice. In addition, KXS and KXS-containing serum enhanced mitochondrial SIRT3 expression and reduced NLRP3 inflammasome expression in APP/PS1 mice.
Conclusion
KXS improves cognitive dysfunction among APP/PS1 mice via regulating SIRT3-mediated neuronal cell apoptosis. These results suggested that KXS was proposed as a neuroprotective agent for AD progression.
In this paper, we theoretically and experimentally analyze the influence of the round-trip phase of distributed feedback (DFB) lasers on the harmonic-phase of photocurrent, caused by the external injection current. The results indicate that the harmonicphase of photocurrent introduced by the round-trip phase (HPIRP) reduces with the increase of modulation depth at a fixed frequency. Then, based on the HPIRP of the DFB laser, a simple photonic generation method of optical microwave waveforms is proposed and verified. In this scheme, three lasers with different wavelengths are mainly used. By adjusting the tunable optical delay lines and attenuators, the amplitude and phase of the photocurrent of the three branches converted by the photodetector (PD) can be controlled individually. The photocurrent of the superposition of the three branches can be controlled properly to form the target waveform. Dispersive elements and complex microwave photonic filtering are not required. Through experiments, rectangular and triangular waveforms with a repetition frequency of 3.75 GHz are generated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.