Step emulsification, which uses a geometry-dependent mechanism for generating uniformly sized droplets, has recently gained considerable attention because of its robustness against flow fluctuations. However, like shear-based droplet generation, step emulsification is susceptible to impurities caused by satellite droplets. Herein, we demonstrate the integration of deterministic lateral displacement (DLD) to separate the main and satellite droplets produced during step emulsification. Step-emulsification nozzles (16 μm deep) in the upstream region of the proposed device were arrayed on the sidewalls of the main channel (91 μm deep). In the downstream region, the DLD micropillars were arrayed periodically with a critical diameter (cut-off value for size-based separation) of 37 μm. When an acrylate monomer and aqueous polyvinyl alcohol solution were infused as the dispersed and continuous phases, respectively, the nozzles produced monodisperse main droplets in the dripping regime, with an average diameter of ~60 μm, coefficient of variation (CV) value below 3%, and satellite droplets of ~3 μm. Upon entering the DLD region near the sidewall, these main and satellite droplets were gradually separated through the pillars based on their sizes. Finally, off-chip photopolymerization yielded monodisperse polymeric microspheres with an average diameter of 55 μm and a CV value of 2.9% (n = 202).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.