Well-crystallized square-like bismuth oxychloride (BiOCl) nanoplates were successfully synthesized by a facile and environmentally friendly hydrothermal process in mannitol solution. The product was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), Raman spectroscopy, UV-vis diffuse reflection spectroscopy (DRS) and nitrogen adsorption. It was found that mannitol played a key role in the formation of square-like BiOCl nanoplates and the possible growth mechanism was also discussed. The photocatalytic activity of prepared BiOCl nanoplates was determined by the degradation of Rhodamine B (RhB) under visible light irradiation. The square-like BiOCl nanoplates exhibited excellent visible-light-driven photocatalytic efficiency, which was much higher than that of commercial BiOCl and TiO 2 (anatase). The remarkable visible-light photocatalytic activity was mainly attributed to the synergistic effect of the layered structure and the strong adsorption of RhB dye upon the BiOCl nanoplates, which might allow more efficient transport of the injected electrons. A possible dye-sensitized photocatalytic degradation process (photosensitization pathway) was proposed.
Multifunctional Bi2O3 porous nanospheres (PNs) with tunable size have been successfully synthesized via a facile solvothermal method. The obtained Bi2O3 porous nanospheres demonstrate outstanding performance in visible-light-driven photocatalysis for Cr(VI) and organic dye removal, inactivation of Gram-negative and Gram-positive bacteria, as well as template-synthesis for fabrication of bismuth-related hollow nanostructures.
Uniform bismuth oxide (Bi(2)O(3)) and bismuth subcarbonate ((BiO)(2)CO(3)) nanotubes were successfully synthesized by a facile solvothermal method without the need for any surfactants or templates. The synergistic effect of ethylene glycol (EG) and urea played a critical role in the formation of the tubular nanostructures. These Bi(2)O(3) and (BiO)(2)CO(3) nanotubes exhibited excellent Cr(VI)-removal capacity. Bi(2)O(3) nanotubes, with a maximum Cr(VI)-removal capacity of 79 mg g(-1), possessed high removal ability in a wide range of pH values (3-11). Moreover, Bi(2)O(3) and (BiO)(2)CO(3) nanotubes also displayed highly efficient photocatalytic activity for the degradation of RhB under visible-light irradiation. This work not only demonstrates a new and facile route for the fabrication of Bi(2)O(3) and (BiO)(2)CO(3) nanotubes, but also provides new promising adsorbents for the removal of heavy-metal ions and potential photocatalysts for environmental remediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.