Grid-connected inverters are the core equipment for connecting marine energy power generation systems to the public electric utility. The variation of current sensor fault severity will make fault samples multimodal. However, linear discriminant analysis assumes that the same fault is independent and identically distributed. To solve this problem, this paper proposes a layering linear discriminant analysis method based on traditional linear discriminant analysis. The proposed method divides the historical fault data based on the sensor fault severity layer-by-layer until the distribution of the same fault category in each subset is very close. Linear discriminant analysis is used to analyze historical fault data in each subgroup, and the kappa coefficient is applied as the basis for ending the training process. A BP neural network is employed to estimate the fault severity during the testing process, and the fault diagnosis sub-model is selected. The proposed method enables the accurate diagnosis of faults with different distributions in the same category and provides an accurate estimate of the sensor’s fault severity degree. The estimated value of the sensor’s fault degree can provide critical information for the maintenance of the equipment and can be used to correct the sensor’s output.
Three-phase grid-connected inverters have been widely used in the distributed generation system, and the current sensor has been applied in closed-loop control in inverters. When the current sensor offset faults occurs, partial fault features of multiple current sensors disappear from the closed-loop control grid-connected system, which leads to difficulties for fault diagnostics and fault-tolerant control. This paper proposes a fault tolerance method based on average current compensation mode to eliminate these adverse effects of fault features. The average current compensation mode compensates the average of the three-phase current to the αβ axis current to realize the fault feature reconstruction of the current sensor. The mode does not affect the normal condition of the system. Then, the data-driven method is used for fault diagnosis, and the corresponding fault tolerant control model is selected according to the diagnosis results. Finally, the experimental results show that the proposed strategy has a good fault tolerance control performance and can improve the fault feature discrimination and diagnostic accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.