In this paper, a practical PI-PD controller parameter tuning method is proposed, which uses the incenter of the triangle and the Fermat point of the convex polygon to optimize the PI-PD controller. Combined with the stability boundary locus method, the PI-PD controller parameters that can ensure stability for the unstable fractional-order system with time delay are obtained. Firstly, the parameters of the inner-loop PD controller are determined by the centre coordinates of the CSR in the kd−kf plane. Secondly, a new graphical method is used to calculate the parameters of the PI controller, in which Fermat points in the CSR of (kp−ki) plane are selected. Furthermore, the method is extended to uncertain systems, and the PI-PD controller parameters are obtained by using the proposed method through common stable region of all stable regions. The proposed graphical method not only ensures the stability of the closed-loop system but also avoids the complicated optimization calculations. The superior control performance of this method is illustrated by simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.