Under normal cellular conditions, the tumor suppressor protein p53 is kept at low levels in part due to ubiquitination by MDM2, a process initiated by binding of MDM2 to the intrinsically disordered transactivation domain (TAD) of p53. Many experimental and simulation studies suggest that disordered domains such as p53 TAD bind their targets nonspecifically before folding to a tightly associated conformation, but the microscopic details are unclear. Toward a detailed prediction of binding mechanisms, pathways, and rates, we have performed large-scale unbiased all-atom simulations of p53-MDM2 binding. Markov state models (MSMs) constructed from the trajectory data predict p53 TAD binding pathways and on-rates in good agreement with experiment. The MSM reveals that two key bound intermediates, each with a nonnative arrangement of hydrophobic residues in the MDM2 binding cleft, control the overall on-rate. Using microscopic rate information from the MSM, we parameterize a simple four-state kinetic model to 1) determine that induced-fit pathways dominate the binding flux over a large range of concentrations, and 2) predict how modulation of residual p53 helicity affects binding, in good agreement with experiment. These results suggest new ways in which microscopic models of peptide binding, coupled with simple few-state binding flux models, can be used to understand biological function in physiological contexts.
Accurate and rapid calculation of protein-small molecule interaction free energies is critical for computational drug discovery. Because of the large chemical space spanned by drug-like molecules, classical force fields contain thousands of parameters describing atom-pair distance and torsional preferences; each parameter is typically optimized independently on simple representative molecules. Here, we describe a new approach in which small molecule force field parameters are jointly optimized guided by the rich source of information contained within thousands of available small molecule crystal structures. We optimize parameters by requiring that the experimentally determined molecular lattice arrangements have lower energy than all alternative lattice arrangements. Thousands of independent crystal lattice-prediction simulations were run on each of 1386 small molecule crystal structures, and energy function parameters of an implicit solvent energy model were optimized, so native crystal lattice arrangements had the lowest energy. The resulting energy model was implemented in Rosetta, together with a rapid genetic algorithm docking method employing grid-based scoring and receptor flexibility. The success rate of bound structure recapitulation in cross-docking on 1112 complexes was improved by more than 10% over previously published methods, with solutions within <1 Å in over half of the cases. Our results demonstrate that small molecule crystal structures are a rich source of information for guiding molecular force field development, and the improved Rosetta energy function should increase accuracy in a wide range of small molecule structure prediction and design studies.
We present a Bayesian inference approach to estimating conformational state populations from a combination of molecular modeling and sparse experimental data. Unlike alternative approaches, our method is designed for use with small molecules and emphasizes high-resolution structural models, using inferential structure determination with reference potentials, and Markov Chain Monte Carlo to sample the posterior distribution of conformational states. As an application of the method, we determine solution-state conformational populations of the 14-membered macrocycle cineromycin B, using a combination of previously published sparse Nuclear Magnetic Resonance (NMR) observables and replica-exchange molecular dynamic/Quantum Mechanical (QM)-refined conformational ensembles. Our results agree better with experimental data compared to previous modeling efforts. Bayes factors are calculated to quantify the consistency of computational modeling with experiment, and the relative importance of reference potentials and other model parameters.
Peptoids (N-substituted oligoglycines) are biomimetic polymers that can fold into a variety of unique structural scaffolds. Peptoid helices, which result from the incorporation of bulky chiral side chains, are a key peptoid structural motif whose formation has not yet been accurately modeled in molecular simulations. Here, we report that a simple modification of the backbone φ-angle potential in GAFF is able to produce well-folded cis-amide helices of (S)-N-(1-phenylethyl)glycine (Nspe), consistent with experiment. We validate our results against both QM calculations and NMR experiments. For this latter task, we make quantitative comparisons to sparse NOE data using the Bayesian Inference of Conformational Populations (BICePs) algorithm, a method we have recently developed for this purpose. We then performed extensive REMD simulations of Nspe oligomers as a function of chain length and temperature to probe the molecular forces driving cooperative helix formation. Analysis of simulation data by Lifson-Roig helix-coil theory show that the modified potential predicts much more cooperative folding for Nspe helices. Unlike peptides, per-residue entropy changes for helix nucleation and extension are mostly positive, suggesting that steric bulk provides the main driving force for folding. We expect these results to inform future work aimed at predicting and designing peptoid peptidomimetics and tertiary assemblies of peptoid helices.
Peptoids are peptidomimetics of interest in the fields of drug development and biomaterials. However, obtaining stable secondary structures is challenging, and designing these requires effective control of the peptoid tertiary amide cis/trans equilibrium. Herein, we report new fluorine-containing aromatic monomers that can control peptoid conformation. Specifically, we demonstrate that a fluoro-pyridine group can be used to circumvent the need for monomer chirality to control the cis/trans equilibrium. We also show that incorporation of a trifluoro-methyl group (N CF3 Rpe) rather than a methyl group (NRpe) at the α-carbon of a monomer gives rise to a 5-fold increase in cis-isomer preference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.