Betaine is known as trimethylglycine and is widely distributed in animals, plants, and microorganisms. Betaine is known to function physiologically as an important osmoprotectant and methyl group donor. Accumulating evidence has shown that betaine has anti-inflammatory functions in numerous diseases. Mechanistically, betaine ameliorates sulfur amino acid metabolism against oxidative stress, inhibits nuclear factor-κB activity and NLRP3 inflammasome activation, regulates energy metabolism, and mitigates endoplasmic reticulum stress and apoptosis. Consequently, betaine has beneficial actions in several human diseases, such as obesity, diabetes, cancer, and Alzheimer’s disease.
Fibrillogenesis of amyloid β-protein (Aβ) is a pathological hallmark of Alzheimer's disease, so inhibition of Aβ aggregation is considered as an important strategy for the precaution and treatment of AD. Curcumin (Cur) has been recognized as an effective inhibitor of Aβ fibrillogenesis, but its potential application is limited by its poor bioavailability. Herein, we proposed to conjugate Cur to a zwitterionic polymer, poly(carboxybetaine methacrylate) (pCB), and synthesized three Cur@pCB conjugates of different degrees of substitution (DS, 1.9-2.9). Cur@pCB conjugates self-assembled into nanogels of 120-190 nm. The inhibition effects of Cur@pCB conjugates on the fibrillation and cytotoxicity of Aβ was investigated by extensive biophysical and biological analyses. Thioflavin T fluorescence assays and atomic force microscopic observations revealed that the Cur@pCB conjugates were much more efficient than molecular curcumin on inhibiting Aβ fibrillation, and cytotoxicity assays also indicated the same tendency. Of the three conjugates, Cur1@pCB of the lowest DS (1.97) exhibited the best performance; 5 μM Cur1@pCB functioned similarly with 25 μM free curcumin. Moreover, 5 μM Cur1@pCB increased the cell viability by 43% but free curcumin at the same concentration showed little effect. It is considered that the highly hydrated state of the zwitterionic polymers resulted in the superiority of Cur@pCB over free curcumin. Namely, the dense hydration layer on the conjugates strongly stabilized the bound Aβ on curcumin anchored on the polymer, suppressing the conformational transition of the protein to β-sheet-rich structures. This was demonstrated by circular dichroism spectroscopy, in which Cur1@pCB was proven to be the strongest in the three conjugates. The research has thus revealed a new function of zwitterionic polymer pCBMA and provided new insights into the development of more potent nanoinhibitors for suppressing Aβ fibrillogenesis and cytotoxicity.
This paper reports a novel redox-sensitive micellar system for the co-delivery of doxorubicin (Dox) and a chemosensitizer (curcumin, Cur) to overcome the multidrug resistance (MDR) in cancer cells. Dox and Cur were co-conjugated onto a zwitterionic polymer, poly(carboxybetaine) (pCB), to form Cur-pCB-Dox that self-assembled into stable micelles (164.2 ± 4.8 nm). Single-drug conjugates (pCB-Dox and pCB-Cur) were prepared for comparisons. Compared to the high half-maximal inhibitory concentration (IC 50 ) of Dox (437.2 μg/mL), the IC 50 value of pCB-Dox (14.1 μg/mL) was only 1/33 that of Dox. Confocal laser scanning microscopy and flow cytometry revealed the greatly enhanced cell uptake of the conjugate due to the enhanced permeability and retention effect of tumor cells on the micellar conjugate. Co-delivery of pCB-Dox with pCB-Cur further reduced the IC 50 value by 37% (8.9 μg/mL). More importantly, Cur-pCB-Dox exhibited the strongest cytotoxicity against MCF-7/Adr cells (IC 50 , 5.87 μg/mL) because the codelivered Dox and Cur on one carrier specifically transported into the same cells, which inhibited the efflux of Dox by Cur, led to a higher intracellular Dox concentration and made the drugs exert synergistic effects at the targeting regions. The results proved the zwitterionic micelles as promising drug co-delivery vehicles for fighting against MDR.
Fibrillogenesis of amyloid β-protein
(Aβ) is pathologically
associated with Alzheimer’s disease (AD), so modulating Aβ
aggregation is crucial for AD prevention and treatment. Herein, a
zwitterionic polymer with short dimethyl side chains (pID) is synthesized
and conjugated with a heptapeptide inhibitor (Ac-LVFFARK-NH2, LK7) to construct zwitterionic polymer–inhibitor conjugates
for enhanced inhibition of Aβ aggregation. However, it is unexpectedly
found that the LK7@pID conjugates remarkably promote Aβ fibrillization
to form more fibrils than the free Aβ system but effectively
eliminate Aβ-induced cytotoxicity. Such an unusual behavior
of the LK7@pID conjugates is unraveled by extensive mechanistic studies.
First, the hydrophobic environment within the assembled micelles of
LK7@pID promotes the hydrophobic interaction between Aβ molecules
and LK7@pID, which triggers Aβ aggregation at the very beginning,
making fibrillization occur at an earlier stage. Second, in the aggregation
process, the LK7@pID micelles disassemble by the intensive interactions
with Aβ, and LK7@pID participates in the fibrillization by being
embedded in the Aβ fibrils, leading to the formation of hybrid
and heterogeneous fibrillar aggregates with a different structure
than normal Aβ fibrils. This unique Trojan horse-like feature
of LK7@pID conjugates has not been observed for any other inhibitors
reported previously and may shed light on the design of new modulators
against β-amyloid cytotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.