The Complete Coverage Path Planning (CCPP) is a key technology in the field of agricultural robots, and has great significance for improving the efficiency and quality of tillage, fertilization, harvesting, and other agricultural robot operations, as well as reducing the operation energy consumption. The traditional boustrophedon- or heuristic-search-algorithm-based CCPP methods, when coping with the field with irregular boundaries, obstacles, and other complex environments, still face many problems and challenges, such as large repeated work areas, multiple turns or U-turns, low operation efficiency, and prone to local optimum. In order to solve the above problems, an improved-genetic-algorithm-based CCPP method was proposed in this paper, the proposed method innovatively extends the traditional genetic algorithm’s chromosomes and single-point mutation into chromosome pairs and multi-point mutation, and proposed a multi-objective equilibrium fitness function. The simulation and experimental results on simple regular fields showed that the proposed improved-genetic-algorithm-based CCPP method achieved the comparable performance with the traditional boustrophedon-based CCPP method. However, on the complex irregular fields, the proposed CCPP method reduces 38.54% of repeated operation area and 35.00% of number of U-turns, and can save 7.82% of energy consumption on average. This proved that the proposed CCPP method has a strong adaptive capacity to the environment, and has practical application value in improving the efficiency and quality of agricultural machinery operations, and reducing the energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.