Immune thrombocytopenia (ITP) is a common bleeding disorder caused primarily by autoantibodies against platelet GPIIbIIIa and/or the GPIb complex. Current theory suggests that antibody-mediated platelet destruction occurs in the spleen, via macrophages through Fc–FcγR interactions. However, we and others have demonstrated that anti-GPIbα (but not GPIIbIIIa)-mediated ITP is often refractory to therapies targeting FcγR pathways. Here, we generate mouse anti-mouse monoclonal antibodies (mAbs) that recognize GPIbα and GPIIbIIIa of different species. Utilizing these unique mAbs and human ITP plasma, we find that anti-GPIbα, but not anti-GPIIbIIIa antibodies, induces Fc-independent platelet activation, sialidase neuraminidase-1 translocation and desialylation. This leads to platelet clearance in the liver via hepatocyte Ashwell–Morell receptors, which is fundamentally different from the classical Fc–FcγR-dependent macrophage phagocytosis. Importantly, sialidase inhibitors ameliorate anti-GPIbα-mediated thrombocytopenia in mice. These findings shed light on Fc-independent cytopenias, designating desialylation as a potential diagnostic biomarker and therapeutic target in the treatment of refractory ITP.
Fetal and neonatal immune thrombocytopenia (FNIT) is a severe bleeding disorder caused by maternal antibody-mediated destruction of fetal/neonatal platelets. It is the most common cause of severe thrombocytopenia in neonates, but the frequency of FNIT-related miscarriage is unknown, and the mechanism(s) underlying fetal mortality have not been explored. Furthermore, although platelet αIIbβ3 integrin and GPIbα are the major antibody targets in immune thrombocytopenia, the reported incidence of anti-GPIbα-mediated FNIT is rare. Here, we developed mouse models of FNIT mediated by antibodies specific for GPIbα and β3 integrin and compared their pathogenesis. We found, unexpectedly, that miscarriage occurred in the majority of pregnancies in our model of anti-GPIbα-mediated FNIT, which was far more frequent than in anti-β3-mediated FNIT. Dams with anti-GPIbα antibodies exhibited extensive fibrin deposition and apoptosis/necrosis in their placentas, which severely impaired placental function. Furthermore, anti-GPIbα (but not anti-β3) antiserum activated platelets and enhanced fibrin formation in vitro and thrombus formation in vivo. Importantly, treatment with either intravenous IgG or a monoclonal antibody specific for the neonatal Fc receptor efficiently prevented anti-GPIbα-mediated FNIT. Thus, the maternal immune response to fetal GPIbα causes what we believe to be a previously unidentified, nonclassical FNIT (i.e., spontaneous miscarriage but not neonatal bleeding) in mice. These results suggest that a similar pathology may have masked the severity and frequency of human anti-GPIbα-mediated FNIT, but also point to possible therapeutic interventions.
Summary. Background: Fibrinogen (Fg) has been considered essential for platelet aggregation. However, we recently demonstrated formation of occlusive thrombi in Fg‐deficient mice and in mice doubly deficient for Fg and von Willebrand factor (Fg/VWF−/−). Methods and results: Here we studied Fg/VWF‐independent platelet aggregation in vitro and found no aggregation in citrated platelet‐rich plasma of Fg/VWF−/− mice. Surprisingly, in Fg/VWF−/− plasma without anticoagulant, adenosine diphosphate induced robust aggregation of Fg/VWF−/− platelets but not of β3‐integrin‐deficient (β3−/−) platelets. In addition, β3−/− platelets did not significantly incorporate into thrombi in Fg/VWF−/− mice. This Fg/VWF‐independent aggregation was blocked by thrombin inhibitors (heparin, hirudin, PPACK), and thrombin or thrombin receptor activation peptide (AYPGKF‐NH2) induced aggregation of gel‐filtered Fg/VWF−/− platelets in 1 mm Ca2+ PIPES buffer. Notably, aggregation in PIPES buffer was only 50–60% of that observed in Fg/VWF−/− plasma. Consistent with the requirement for thrombin in vitro, hirudin completely inhibited thrombus formation in Fg/VWF−/− mice. These data define a novel pathway of platelet aggregation independent of both Fg and VWF. Although this pathway was not detected in the presence of anticoagulants, it was observed under physiological conditions in vivo and in the presence of Ca2+in vitro. Conclusions: β3 integrin, thrombin, and Ca2+ play critical roles in this Fg/VWF‐independent aggregation, and both plasma and platelet granule proteins contribute to this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.