Active photonics based on graphene has attracted wide attention for developing tunable and compact optical devices with excellent performances. In this paper, the dynamic manipulation of electromagnetically induced transparency (EIT) with high quality factors (Q-factors) is realized in the optical telecommunication range via the graphene-loaded all-dielectric metasurface. The all-dielectric metasurface is composed of split Si nanocuboids, and high Q-factor EIT resonance stems from the destructive interference between the toroidal dipole resonance and the magnetic dipole resonance. As graphene is integrated on the all-dielectric metasurface, the modulation of the EIT window is realized by tuning the Fermi level of graphene, engendering an appreciable modulation depth of 88%. Moreover, the group velocity can be tuned from c/1120 to c/3390. Our proposed metasurface has the potential for optical filters, modulators, and switches.
We numerically investigated the effects of meta-atom interactions on the Fano resonance in all-dielectric metasurfaces by introducing alternately flipped asymmetric paired bars (APBs) and split asymmetric paired bars (SAPBs). With alternately flipped configurations, the Q-factor of the Fano resonance is significantly enhanced up to one order of magnitude, and the electric field is strengthened by more than twice. Abnormally, the Q-factor increases with gap size in the alternately flipped SAPBs. These are attributed to the destructive interaction among nearest-neighbor dipole resonators. The Q-factor of 108 and Raman enhancement factor of 109 in the gap can be realized with the alternately flipped SAPBs made of Si. Our study provides a way to improve performance of practical devices such as ultrasensitive sensors, nonlinear optics, and quantum emitters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.