As the first line of immune defense for Mycobacterium tuberculosis (Mtb), macrophages also provide a major habitat for Mtb to reside in the host for years. The battles between Mtb and macrophages have been constant since ancient times. Triggered upon Mtb infection, multiple cellular pathways in macrophages are activated to initiate a tailored immune response toward the invading pathogen and regulate the cellular fates of the host as well. Toll-like receptors (TLRs) expressed on macrophages can recognize pathogen-associated-molecular patterns (PAMPs) on Mtb and mediate the production of immune-regulatory cytokines such as tumor necrosis factor (TNF) and type I Interferons (IFNs). In addition, Vitamin D receptor (VDR) and Vitamin D-1-hydroxylase are up-regulated in Mtb-infected macrophages, by which Vitamin D participates in innate immune responses. The signaling pathways that involve TNF, type I IFNs and Vitamin D are inter-connected, which play critical roles in the regulation of necroptosis, apoptosis, and autophagy of the infected macrophages. This review article summarizes current knowledge about the interactions between Mtb and macrophages, focusing on cellular fates of the Mtb-infected macrophages and the regulatory molecules and cellular pathways involved in those processes.
Black locust (Robinia pseudoacacia L.) is a tree species of high economic and ecological value, but is also considered to be highly invasive. Understanding the global potential distribution and ecological characteristics of this species is a prerequisite for its practical exploitation as a resource. Here, a maximum entropy modeling (MaxEnt) was used to simulate the potential distribution of this species around the world, and the dominant climatic factors affecting its distribution were selected by using a jackknife test and the regularized gain change during each iteration of the training algorithm. The results show that the MaxEnt model performs better than random, with an average test AUC value of 0.9165 (±0.0088). The coldness index, annual mean temperature and warmth index were the most important climatic factors affecting the species distribution, explaining 65.79% of the variability in the geographical distribution. Species response curves showed unimodal relationships with the annual mean temperature and warmth index, whereas there was a linear relationship with the coldness index. The dominant climatic conditions in the core of OPEN ACCESSForests 2014, 5 2774 the black locust distribution are a coldness index of −9.8 °C-0 °C, an annual mean temperature of 5.8 °C-14.5 °C, a warmth index of 66 °C-168 °C and an annual precipitation of 508-1867 mm. The potential distribution of black locust is located mainly in the United States, the United Kingdom, Germany, France, the Netherlands, Belgium, Italy, Switzerland, Australia, New Zealand, China, Japan, South Korea, South Africa, Chile and Argentina. The predictive map of black locust, climatic thresholds and species response curves can provide globally applicable guidelines and valuable information for policymakers and planners involved in the introduction, planting and invasion control of this species around the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.