We have proposed and demonstrated a double-cladding fiber (DCF) with cladding-mode resonance property for broadband acoustic vibration sensing. Since the fundamental mode in the core waveguide is able to be coupled to LP 05 mode in the tube waveguide once the phase-matching condition is fulfilled, the transmission spectrum can exhibit a dip with a large extinction ratio. An acoustic vibration could induce the wavelength shift of such transmission spectrum, so that the intensity variation at a wavelength near the dip is coded with the information of the acoustic vibration signal. By demodulating the response of intensity variation, the frequency of the applied acoustic vibration signal can be recovered. Such a DCF-based sensor with an intensity modulation could measure the acoustic vibration with a broadband frequency range from 1 Hz to 400 kHz and exhibits the maximum signal-to-noise ratio (SNR) of ~80.79 dB when the vibration frequency is 20 kHz. The obtained results show that the proposed DCF-based acoustic vibration sensor has a potential application in environmental assessment, structural damage detection, and health monitoring.
In this paper, a fiber grating demodulation system based on two transmission volume Bragg gratings (VBGs) was proposed. In order to resolve the problem that the spectral resolution of the present fiber grating demodulation system is not high enough, the two transmission VBGs were applied to improve the spectral resolution and reduce the volume of the spectrometer. The diffraction characteristics of the transmission VBGs were analyzed, and the optical path of the two transmission VBGs demodulation system was designed based on the diffraction characteristics. The grating constant, lens parameters, and aberration correction of the system were analyzed and calculated. The calculation showed that the theoretical wavelength range of the demodulation system was from 1525 nm to 1565 nm and the theoretical optical resolution was 60 pm when the grating constant was 0.9168, the angle between two transmission VBGs was 89°, the focal length of the collimator was 60 mm, and the focal length of the imaging lens was 131.5 mm. The aberration of the system was well corrected by using a lens as the collimator and a reflector as the imaging lens. The system principle prototype was assembled and calibrated, and its performances were experimentally investigated. The results showed that the spectrometer worked stably, with a wavelength range from 1525 nm to 1565 nm, an optical wavelength resolution of 65.3 pm, and a high demodulation speed of 10 kHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.