Although it is widely accepted that data quality for event‐related potential (ERP) components varies considerably across studies and across participants within a study, ERP data quality has not received much systematic analysis. The present study used a recently developed metric of ERP data quality— the standardized measurement error (SME)—to examine how data quality varies across different ERP paradigms, across individual participants, and across different procedures for quantifying amplitude and latency values. The EEG recordings were taken from the ERP CORE, which includes data from 40 neurotypical college students for seven widely studied ERP components: P3b, N170, mismatch negativity, N400, error‐related negativity, N2pc, and lateralized readiness potential. Large differences in data quality were observed across the different ERP components, and very large differences in data quality were observed across participants. Data quality also varied depending on the algorithm used to quantify the amplitude and especially the latency of a given ERP component. These results provide an initial set of benchmark values that can be used for comparison with previous and future ERP studies. They also provide useful information for predicting effect sizes and statistical power in future studies, even with different numbers of trials. More broadly, this study provides a general approach that could be used to determine which specific experimental designs, data collection procedures, and data processing algorithms lead to the best data quality.
Evoked event-related oscillations (EROs) have been widely used to explore the mechanisms of brain activities for both normal people and neuropsychiatric disease patients. In most previous studies, the calculation of the regions of evoked EROs of interest is commonly based on a predefined time window and a frequency range given by the experimenter, which tends to be subjective. Additionally, evoked EROs sometimes cannot be fully extracted using the conventional time-frequency analysis (TFA) because they may be overlapped with each other or with artifacts in time, frequency, and space domains. To further investigate the related neuronal processes, a novel approach was proposed including three steps: (1) extract the temporal and spatial components of interest simultaneously by temporal principal component analysis (PCA) and Promax rotation and project them to the electrode fields for correcting their variance and polarity indeterminacies, (2) calculate the time-frequency representations (TFRs) of the back-projected components, and (3) compute the regions of evoked EROs of interest on TFRs objectively using the edge detection algorithm. We performed this novel approach, conventional TFA, and TFA-PCA to analyse both the synthetic datasets with different levels of SNR and an actual ERP dataset in a two-factor paradigm of waiting time (short/long) and feedback (loss/gain) separately. Synthetic datasets results indicated that N2-theta and P3-delta oscillations can be stably detected from different SNR-simulated datasets using the proposed approach, but, by comparison, only one oscillation was obtained via the last two approaches. Furthermore, regarding the actual dataset, the statistical results for the proposed approach revealed that P3-delta was sensitive to the waiting time but not for that of the other approaches. This study manifested that the proposed approach could objectively extract evoked EROs of interest, which allows a better understanding of the modulations of the oscillatory responses.
Filtering plays an essential role in event-related potential (ERP) research, but filter settings are usually chosen on the basis of historical precedent, lab lore, or informal analyses. This reflects, in part, the lack of a well-reasoned, easily implemented method for identifying the optimal filter settings for a given type of ERP data. To fill this gap, we developed an approach that involves finding the filter settings that maximize the signal-to-noise ratio for a specific amplitude score (or minimizes the noise for a latency score) while minimizing waveform distortion. The signal is estimated by obtaining the amplitude score from the grand average ERP waveform (usually a difference waveform). The noise is estimated using the standardized measurement error of the single-subject scores. Waveform distortion is estimated by passing noise-free simulated data through the filters. This approach allows researchers to determine the most appropriate filter settings for their specific scoring methods, experimental designs, subject populations, recording setups, and scientific questions. We have provided a set of tools in ERPLAB Toolbox to make it easy for researchers to implement this approach with their own data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.