Drill string vibrations and shocks (V&S) can limit the optimization of drilling performance, which is a key problem for trajectory optimizing, wellbore design, increasing drill tools life, rate of penetration, and intelligent drilling. The directional wells and other special trajectory drilling technologies are often used in deep water, deep well, hard rock, and brittle shale formations. In drilling these complex wells, the cost caused by V&S increases. According to past theories, indoor experiments, and field studies, the relations among ten kinds of V&S, which contain basic forms, response frequency, and amplitude, are summarized and discussed. Two evaluation methods are compared systematically, such as theoretical and measurement methods. Typical vibration measurement tools are investigated and discussed. The control technologies for drill string V&S are divided into passive control, active control, and semiactive control. Key methods for and critical equipment of three control types are compared. Based on the past development, a controlling program of drill string V&S is devised. Application technologies of the drill string V&S are discussed, such as improving the rate of penetration, controlling borehole trajectory, finding source of seismic while drilling, and reducing the friction of drill string. Related discussions and recommendations for evaluating, controlling, and applying the drill string V&S are made.
The lower rate of penetration (ROP) is one of the key technical difficulties during drilling of shale reservoirs. Percussive-rotary drilling (PRD) is crucial for increasing ROP. One of the core problems of ROP optimization for PRD are the dynamic damage characteristics of rock fragmentation. By considering the dynamic drilling parameters, a new model for estimating the PRD with a full-scale polycrystalline diamond compact (PDC) bit is established. The mechanical parameters of shale are measured by a wave velocity method. Rock damage characteristics are simulated by using the finite element method. The numerical simulation model is verified by the actual drilling case in LMX shale reservoir in Sichuan (China). The results indicate that rock element damage occurs along the direction of maximum principal stress. The order of decreasing rock damage rate is impact-static load, static load and impact load. When the impact load has the same peak value, and the rock elements in contact with the cutters obtain more energy with load frequency increasing. The rock fragmentation efficiency under a sine wave is higher than rectangular and pulse waves. The rock can obtain more energy to be broken with the increasing impact load duration and peak values. When the impact-static load goes over the rock damage threshold value, the higher the peak value of the impact load is, the more energy the rock will obtain. The higher the lateral vibration amplitude of the drill bit, the lower the efficiency of rock fragmentation. Repetitions of drill bit axial vibration at one indentation point will reduce the ROP, and the axial vibration energy of the drill bit is consumed. Therefore, a small lateral movement and reasonable axial vibration frequency increase the rock breaking efficiency. The ROP was increased through the suppression of drill string and the application of vibration. The study results can be used in the optimization designs of bit trajectory and ROP for PRD tools.Energies 2018, 11, 1326 2 of 23 percussive drilling, and PRD [4,5]. PRD is developed from rotary drilling and percussive drilling. Significant results in understanding the percussive fragmentation mechanism have also been achieved in the laboratory. The rock fragmentation efficiency is not a linear relationship with the drilling parameters, such as weight on bit (WOB), torque on bit (TOB), and rotations per minute (RPM). Experiments examining rock breakage under dynamic and static loads were carried out. PRD is one of the best ways to improve the drilling efficiency of hard formation. The fragmentation investigation of granite is studied by the use of the dynamic and static rock-breaking test device, reasonable load of single cutter cutting rock under the impact-static action was proposed [6][7][8].Energies 2018, 11, x FOR PEER REVIEW 2 of 23 mechanisms. One of the earliest reports of percussion drilling technique occurred in 1940s [3]. Since then different terms have been used, such as downhole hammer, percussion hammer, down-the-hole hammer, percussive drilling, an...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.