This paper describes the synthesis and characterization of the first series of hydrogen bonding-driven hydrazide foldamers and their recognition for alkyl saccharides in chloroform. Oligomers 1, 2-4, 5, 6, and 7, which contain one, two, four, six, or twelve repeated dibenzoyl hydrazide residues, respectively, have been prepared. The rigid and planar conformations of 1 and 2 or 4 have been established with X-ray analysis and (1)H NMR spectroscopy, whereas the folding and helical conformations of 5-7 have been evidenced by the 1D and 2D (1)H NMR and IR spectroscopy and molecular mechanics calculations. Molecular mechanics calculations also revealed that 5, 6, and 7 possess a rigid cavity with size of ca. 10.6 to 11.1 A, and half of the carbonyl groups in the folding conformations are orientated inwardly inside the cavity. (1)H NMR and CD experiments revealed that 5-7 efficiently complex alkylated mono- and disaccharides 32-35 in chloroform. The association constants (K(assoc)) of the complexes have been determined with the (1)H NMR and fluorescent titration methods. The energy-minimized conformation of 6.34 has been obtained with molecular mechanics calculation. The hydrazide-based folding structures described here represent novel examples of hydrogen bonding-driven foldamers that act as artificial receptors for selective molecular recognition.
This paper describes the synthesis, self-assembly, and characterization of a new class of highly stable hydrazide-based quadruply hydrogen-bonded heterodimers. All of the hydrazide-derived heterodimers possess the complementary ADDA-DAAD hydrogen-bonding sequences. Hydrazide derivatives 1, which has two intramolecular S(6) RO.H-N hydrogen bonds, and 2 complex to afford two fastly exchanging isomeric heterodimers 1.2 and 1.2' in chloroform, as a result of two different conformational arrangements of 2. An average binding constant K(assoc) of 4.7 x 10(4) M(-)(1) was determined for heterodimer 1.2 and 1.2' by (1)H NMR titration of 1 with changing 2 in chloroform-d. In contrast, 1 binds 11 and 12, both of which are introduced with two intramolecular S(6) hydrogen bonds, to exclusively afford heterodimers 1.11 and 1.12, with K(assoc) values of 1.8 x 10(4) and 5.0 x 10(2) M(-)(1), respectively. Fluorine-containing 19, which has a hydrazide skeleton identical to that of 1 but two intramolecular S(6) F.H-N hydrogen bonds, can also complex with 2, 11, and 12, to afford heterodimers 19.2, 19.2', 19.11, and 19.12, with K(assoc) values of of 1.2 x 10(4) (average value for 19.2 and 19.2'), 5.4 x 10(3), and 1.9 x 10(2) M(-)(1), respectively. The structures of the new heterodimers have been proven with NOESY, IR, and VPO (for some of the heterodimers) experiments. Moreover, 1 and 19 can also strongly bind 2,7-dilauroylamido-1,8-naphthyridine 23 to afford dimers 1.23 and 19.23 with K(assoc) values of 6.0 x 10(5) and 1.4 x 10(5) M(-)(1), respectively. Adding 1 to the 1:1 solution of 23 and 1-octyl-3-(4-oxo-3,4-dihydro-pyrido[2,3-d]pyrimidin-2-yl)urea 24 or 1-octyl-3-(4-oxo-1,4-dihydro-pyrimidin-2-yl)urea 25, which had been developed initially by Zimmerman and Meijer, respectively, induces dimers 23.24 and 23.25 to dissociate, leading to the formation of dimers 1.23 and 24.24 or 25.25, respectively. The new hydrazide-based hydrogen-bonding modules described are useful building blocks for self-assembly and open a new avenue to recognition between discrete supramolecular species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.