Global scientific production represents a rapid increase in the PET field in recent years. The majority of PET papers are from high-income countries. The USA is the most prolific country, whereas some smaller European countries may be more prolific relative to their GDP/population.
The early diagnosis of prostate cancer (PCa) appears to be of vital significance for the provision of appropriate treatment programs. Even though several sophisticated imaging techniques such as positron emission tomography/computed tomography (PET/CT) and elastosonography (ES) have already been developed for PCa diagnosis, the diagnostic accuracy of these imaging techniques is still controversial to some extent. Therefore, a comprehensive meta-analysis in this study was performed to compare the accuracy of various diagnostic imaging methods for PCa, including 11C-choline PET/CT, 11C-acetate PET/CT, 18F-fluorocholine PET/CT, 18F-fluoroglucose PET/CT, transrectal real-time elastosonography (TRTE), and shear-wave elastosonography (SWE). The eligible studies were identified through systematical searching for the literature in electronic databases including PubMed, Cochrane, and Web of Science. On the basis of the fixed-effects model, the pooled sensitivity (SEN), specificity (SPE), and area under the receiver operating characteristics curve (AUC) were calculated to estimate the diagnostic accuracy of 11C-choline PET/CT, 11C-acetate PET/CT, 18F-fluorocholine (FCH) PET/CT, 18F-fluoroglucose (FDG) PET/CT, TRTE, and SWE. All the statistical analyses were conducted with R language Software. The present meta-analysis incorporating a total of 82 studies demonstrated that the pooled sensitivity of the six imaging techniques were sorted as follows: SWE > 18F-FCH PET/CT > 11C-choline PET/CT > TRTE > 11C-acetate PET/CT > 18F-FDG PET/CT; the pooled specificity were also compared: SWE > 18F-FCH PET/CT > 11C-choline PET/CT > TRTE > 18F-FDG PET/CT > 11C-acetate PET/CT; finally, the pooled diagnostic accuracy of the six imaging techniques based on AUC were ranked as below: SWE > 18F-FCH PET/CT > 11C-choline PET/CT > TRTE > 11C-acetate PET/CT > 18F-FDG PET/CT. SWE and 18F-FCH PET/CT imaging could offer more assistance in the early diagnosis of PCa than any other studied imaging techniques. However, the diagnostic ranking of the six imaging techniques might not be applicable to the clinical phase due to the shortage of stratified analysis.
A biomimic reconstituted high-density-lipoprotein-based drug and p53 gene co-delivery system (rHDL/CD-PEI/p53 complexes) was fabricated as a targeted co-delivery nanovector of drug and gene for potential bladder cancer therapy. Here, CD-PEI was utilized to effectively condense the p53 plasmid, to incorporate the plasmid into rHDL, and to act as an antitumor drug to suppress tumor angiogenesis. The rHDL/CD-PEI/p53 complexes exhibited desirable and homogenous particle size, neutral surface charge, and low cytotoxicity in vitro. The results of confocal laser scanning microscopy and flow cytometry confirmed that SR-BI-targeted function induced specific cytoplasmic delivery and high gene transfection efficiency in MBT-2 murine bladder cells. In addition, rHDL/CD-PEI/p53 complexes co-delivering CD and p53 gene achieved synergistic angiogenesis suppression by more effectively downregulating the expression of vascular endothelial growth factor (VEGF) messenger RNA (mRNA) and protein via different pathways in vitro. In vivo investigation on C3H/He mice bearing MBT-2 tumor xenografts revealed that rHDL/CD-PEI/p53 complexes possessed strong antitumor activity. These findings suggested that rHDL/CD-PEI/p53 complexes could be an ideal tumor-targeting system for simultaneous transfer of drug and gene, which might be a new promising strategy for effective bladder cancer therapy.
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.A biomimic reconstituted high-density-lipoprotein-based drug and p53 gene co-delivery system (rHDL/CD-PEI/p53 complexes) was fabricated as a targeted co-delivery nanovector of drug and gene for potential bladder cancer therapy. Here, CD-PEI was utilized to effectively condense the p53 plasmid, to incorporate the plasmid into rHDL, and to act as an antitumor drug to suppress tumor angiogenesis. The rHDL/CD-PEI/p53 complexes exhibited desirable and homogenous particle size, neutral surface charge, and low cytotoxicity in vitro. The results of confocal laser scanning microscopy and flow cytometry confirmed that SR-BI-targeted function induced specific cytoplasmic delivery and high gene transfection efficiency in MBT-2 murine bladder cells. In addition, rHDL/CD-PEI/p53 complexes co-delivering CD and p53 gene achieved synergistic angiogenesis suppression by more effectively downregulating the expression of vascular endothelial growth factor (VEGF) messenger RNA (mRNA) and protein via different pathways in vitro. In vivo investigation on C3H/He mice bearing MBT-2 tumor xenografts revealed that rHDL/CD-PEI/p53 complexes possessed strong antitumor activity. These findings suggested that rHDL/CD-PEI/p53 complexes could be an ideal tumor-targeting system for simultaneous transfer of drug and gene, which might be a new promising strategy for effective bladder cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.