In terms of tillering potential, the aboveground portions of rice are significantly influenced by the nitrogen level (NL) and transplant density (TD). To obtain a suitable combination of NL and TD, five NLs (0, 90, 180, 270 and 360 kg ha-1) and two TDs [high density (HD), 32.5×104 hills ha-1; low density (LD), 25.5×104 hills ha-1] were used in the rice experiments during 2012 to 2014, in Jiangsu, China. The results showed the highest grain yield of rice obtained at HD and LD when N supply was 180 and 270 kg ha-1, respectively. That’s because there are more tillers per unit area, a larger leaf biomass fraction of total aboveground biomass, a larger leaf area index (LAI) and a larger canopy photosynthesis potential (CPP) at HD. It can be concluded that, higher rice planting densities resulted in less N inputs, while more N is needed to improve single plant actual tiller ability under low density to offset the reduced planting density. When the NL was more than 180 kg ha-1, the actual tillering ability of a single plant at LD was 20% more than that at HD. Based on these results, the supply of 1 kg N can be replaced by adding approximately 1000 planting hills per hectare. Therefore, adjusting the transplant density could be an efficient method to reduce the amount of nitrogen fertilizer and increase the nitrogen fertilizer use efficiency, which is very conducive to the sustainable development of agriculture.
SUMMARYRice (Oryza sativa L.) is one of the most important cereal crops in the world and a potentially important source of zinc (Zn) in the diet. The improvement of Zn content of rice is a global challenge with implications for both rice production and human health. The objective of the present study was to identify the effects of nitrogen (N) fertilizer rates and Zn application methods on Zn content of rice by evaluating rice production on native soils with different Zn availabilities in 2010/11. The results indicated that Zn application increased rice grain yield and Zn content in grains compared with the control; however, this effect was also affected by the native soil Zn availability, N fertilizer rate and Zn fertilizer application method. The native soil Zn status was the dominant factor influencing grain yield and grain Zn content in response to Zn fertilizer application. Grain Zn content ranged from 19·74 to 26·93 mg/kg under the different Zn statuses. The results also indicated that Zn application method has a significant influence on grain yield. Application of Zn fertilizer to the soil was more effective than the foliar spray on rice grain yield; however, the foliar spray resulted in a greater increase in grain Zn content when compared with soil application. Grain Zn content was affected by application method and displayed the following general trend: soil application + foliar spray > foliar spray > soil application. The experiments investigating the effect of N fertilizer rate combined with Zn application method showed a clear increase in both grain yield and Zn content as the N fertilizer level increased from 200 to 300 kg/ha. In addition, the results also indicated that N content and accumulation increased in all plant tissues, which suggests that Zn application might influence the uptake and translocation of N in rice plants. These results suggest that soil application in addition to a foliar spray of Zn should be considered as an important strategy to increase grain yield and grain Zn content of rice grown in soils with low background levels of Zn-associated diethylene triamine pentaacetate acid. Moreover, this process could be further strengthened by a high N application rate. In conclusion, these results demonstrate the potential of optimizing nutrient management using Zn fertilizer to obtain higher grain yields and higher grain Zn content in fields with low native Zn status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.