It is a challenge for Phase Measurement Profilometry (PMP) to measure objects with a large range of reflectivity variation across the surface. Saturated or dark pixels in the deformed fringe patterns captured by the camera will lead to phase fluctuations and errors. Jiang et al. proposed a high dynamic range real-time 3D shape measurement method without changing camera exposures. Three inverted phase-shifted fringe patterns are used to complement three regular phase-shifted fringe patterns for phase retrieval when any of the regular fringe patterns are saturated. But Jiang's method still has some drawbacks: (1) The phases in saturated pixels are respectively estimated by different formulas for different cases. It is shortage of an universal formula; (2) it cannot be extended to four-step phase-shifting algorithm because inverted fringe patterns are the repetition of regular fringe patterns; (3) only three unsaturated intensity values at every pixel of fringe patterns are chosen for phase demodulation, lying idle the other unsaturated ones. We proposed a method for enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm, which combines the complementary technique of inverted and regular fringe patterns with generalized phase-shifting algorithm. Firstly, two sets of complementary phase-shifted fringe patterns, namely regular and inverted fringe patterns are projected and collected. Then all unsaturated intensity values at the same camera pixel from two sets of fringe patterns are selected, and employed to retrieve the phase by generalized phase-shifting algorithm. Finally, simulations and experiments are conducted to prove the validity of the proposed method. The results are analyzed and compared with Jiang's method, which demonstrate that the proposed method not only expands the scope of Jiang's method, but also improves the measurement accuracy.
Keywordsphase-shifting algorithm; high dynamic range (HDR); phase measuring profilometry (PMP); fringe projection; least-square algorithm; phase error
The number of phase wraps in 2D wrapped phase map can be completely eliminated, or greatly reduced by frequency shifting. But the wraps usually cannot be optimally reduced using the conventional fast Fourier transform (FFT) because the spectrum can be shifted only by an integer number in the frequency domain. In order to completely eliminate the phase wraps or achieve a significant phase wrap reduction, in this paper, we propose a fast and precise two-step method for phase wraps reduction, which uses the iterative local discrete Fourier transform (DFT) to determine the sub-pixel spectral peak location and the frequency shifting algorithm that operates in spatial domain to reduce the number of phase wraps. Firstly, an initial estimate of the frequency peak is obtain by FFT, then the sub-pixel spectral peak with high resolution is determined by iteratively upsampling the local DFT around the initial spectral peak location, further the non-integer frequency shifting in spatial domain is realized to eliminate or reduce the number of phase wraps. Finally, simulations and experiments are conducted to prove the validity of the proposed method. The results demonstrates the proposed method's superb computing efficiency, high resolution and overall performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.