Considering the problems related to hard rock blasting under high in-situ stresses at large depths, we conducted crater blasting tests on sandstone specimens under three static load conditions to investigate the strain field evolution of rock blasting under high stress. The digital image correlation (DIC) technique was used to monitor the evolution of the strain field on the free surface. Thus, the influence of the static stress on the blasting strain field was analyzed, and the formation mechanism of cracks on the free surface was elucidated. The results indicate that a circular tensile strain zone was formed without static loading. The direction of the maximum principal strain was perpendicular to the radius, which lead to the random emergence of multiple radial tensile cracks. Under a uniaxial static loading, an elliptical tensile strain zone was formed. The direction of the maximum principal strain was perpendicular to the static loading direction. This facilitated the initiation and propagation of tensile cracks preferentially in the direction parallel to the static loading. Under an equal biaxial static loading, the initial compressive strain in the specimen reduced the increment rate of the blasting strain, and restrained the formation of surface cracks. Besides, a determination method for dynamic tensile fracture strain of rock was proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.