In this paper, we combine the variational iteration method and perturbation theory to solve a time-dependent singularly perturbed reaction-diffusion problem. The problem is considered in the boundary layers and outer region. In the boundary layers, the problem is transformed by the variable substitution, and then the variational iteration method is employed to solve the transformed equation. In the outer region, we use the perturbation theory to obtain the approximation equation and the approximation solution. The final numerical experiments show that this method is accurate.
Purpose -The purpose of this paper is to present a general framework of Homotopy perturbation method (HPM) for analytic inverse heat source problems. Design/methodology/approach -The proposed numerical technique is based on HPM to determine a heat source in the parabolic heat equation using the usual conditions. Then this shows the pertinent features of the technique in inverse problems. Findings -Using this HPM, a rapid convergent sequence which tends to the exact solution of the problem can be obtained. And the HPM does not require the discretization of the inverse problems. So HPM is a powerful and efficient technique in finding exact and approximate solutions without dispersing the inverse problems. Originality/value -The essential idea of this method is to introduce a homotopy parameter p which takes values from 0 to 1. When p ¼ 0, the system of equations usually reduces to a sufficiently simplified form, which normally admits a rather simple solution. As p is gradually increased to 1, the system goes through a sequence of deformations, the solution for each of which is close to that at the previous stage of deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.