Long-distance oil and gas pipelines buried in permafrost areas will inevitably encounter typical geological disasters, such as frost heave and thaw settlement and sliding, which easily cause pipeline displacement, bending, or deformation. When there are certain defects in the pipeline, additional complex, external stress will further lead to the failure of the pipeline or weld and can even lead to serious accidents such as pipeline leakage, pipe burst, or fracture. This paper introduces in detail the typical defects and risks of buried pipelines in permafrost areas and summarizes the in-line inspection technologies, off-line inspection technologies, and integrated monitoring systems for pipelines in the pipeline industry. Regarding pipelines in permafrost areas, in-line inspection methods may be employed. These include magnetic flux leakage, electromagnetic eddy current, ultrasonic, IMU, and electromagnetic acoustic transducer inspections. Off-line inspection is also one of the important means of inspecting a pipeline in a permafrost area. Indirect inspection is combined with verification by direct inspection to check and evaluate the integrity of the anticorrosive coating and the effectiveness of the cathodic protection for the pipeline. Meanwhile, considering the external environment of a pipeline in a permafrost area, a monitoring system should be developed and established. This paper discusses and projects the future development of related technologies, which provides reference for the construction and operation of pipelines in permafrost areas.
With the development of pipeline networks, many safety accidents were caused by pipeline stress concentration; it is of great significance to accurately monitor the pipeline stress state for maintaining pipeline safety. In this paper, based on alternating current stress measurement (ACSM) methods, a 3D simulation model of a pipeline electromagnetic field was established by ANSYS software. The distribution law of the pipeline magnetic field and eddy current field were analyzed, and the influence of size and structure parameters of the coil inside the probe were studied. The internal stress detection system of the pipeline was designed, and the static tensile stress measurement experiment was carried out. Simulation and test results showed that the excitation coil with a larger diameter-to-height ratio had a higher measurement sensitivity. The sensitivity of the probe decreased monotonically with the increase of the difference between inner diameter and outer diameter of the detection coil. It increased monotonically with the increase of the equivalent radius of the detection coil. The best measurement results were obtained when the detection coil was located at the center of the two legs of the U-magnetic core. The results showed that the system could identify the pipeline stress concentration area effectively after detection engineering.
Detecting inner- and outer-surface discontinuities of drill pipe is of great significance to the evaluation of the quality of the drill pipe. This paper proposes a method based on a magnetized eddy current testing technique to detect inner- and outer-surface discontinuities by analyzing the difference of the imaginary part signal characteristics of the receiving coil. For eddy current testing, the outer-surface discontinuities cause the local conductivity to be zero, while inner-surface discontinuities cause the perturbation of the magnetic permeability on the material surface. In this paper, the effects of conductivity distortion and permeability perturbation on induced eddy currents are analyzed by simulation. The conductivity distortion increases the magnetic field above the discontinuity compared to the magnetic field without the discontinuity, while the permeability perturbation reduces the magnetic field. Next, the difference in coil impedance can be used to distinguish the inner- and outer-surface discontinuities. Finally, the feasibility of the method is verified by experiments, and the results show that the inner- and outer-surface discontinuities can be discriminated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.