The contribution of metabolic factors on the severity of osteoarthritis (OA) is not fully appreciated. This study aimed to define the effects of hypercholesterolemia on the progression of OA. Apolipoprotein E-deficient (ApoE) mice and rats with diet-induced hypercholesterolemia (DIHC) rats were used to explore the effects of hypercholesterolemia on the progression of OA. Both models exhibited OA-like changes, characterized primarily by a loss of proteoglycans, collagen and aggrecan degradation, osteophyte formation, changes to subchondral bone architecture, and cartilage degradation. Surgical destabilization of the knees resulted in a dramatic increase of degradative OA symptoms in animals fed a high-cholesterol diet compared with controls. Clinically relevant doses of free cholesterol resulted in mitochondrial dysfunction, overproduction of reactive oxygen species (ROS), and increased expression of degenerative and hypertrophic markers in chondrocytes and breakdown of the cartilage matrix. We showed that the severity of diet-induced OA changes could be attenuated by treatment with both atorvastatin and a mitochondrial targeting antioxidant. The protective effects of the mitochondrial targeting antioxidant were associated with suppression of oxidative damage to chondrocytes and restoration of extracellular matrix homeostasis of the articular chondrocytes. In summary, our data show that hypercholesterolemia precipitates OA progression by mitochondrial dysfunction in chondrocytes, in part by increasing ROS production and apoptosis. By addressing the mitochondrial dysfunction using antioxidants, we were able attenuate the OA progression in our animal models. This approach may form the basis for novel treatment options for this OA risk group in humans.-Farnaghi, S., Prasadam, I., Cai, G., Friis, T., Du, Z., Crawford, R., Mao, X., Xiao, Y. Protective effects of mitochondria-targeted antioxidants and statins on cholesterol-induced osteoarthritis.
Objectives DNA N6‐methyladenine (N6‐mA) demethylase Alkbh1 participates in regulating osteogenic differentiation of mesenchymal stem cell (MSCs) and vascular calcification. However, the role of Alkbh1 in bone metabolism remains unclear. Materials and Methods Bone marrow mesenchymal stem cells (BMSCs)‐specific Alkbh1 knockout mice were used to investigate the role of Alkbh1 in bone metabolism. Western blot, qRT‐PCR, and immunofluorescent staining were used to evaluate the expression of Alkbh1 or optineurin (optn). Micro‐CT, histomorphometric analysis, and calcein double‐labeling assay were used to evaluate bone phenotypes. Cell staining and qRT‐PCR were used to evaluate the osteogenic or adipogenic differentiation of BMSCs. Dot blotting was used to detect the level of N6‐mA in genomic DNA. Chromatin immunoprecipitation (Chip) assays were used to identify critical targets of Alkbh1. Alkbh1 adeno‐associated virus was used to overexpress Alkbh1 in aged mice. Results Alkbh1 expression in BMSCs declined during aging. Knockout of Alkbh1 promoted adipogenic differentiation of BMSCs while inhibited osteogenic differentiation. BMSC‐specific Alkbh1 knockout mice exhibited reduced bone mass and increased marrow adiposity. Mechanistically, we identified optn as the downstream target through which Alkbh1‐mediated DNA m6A modification regulated BMSCs fate. Overexpression of Alkbh1 attenuated bone loss and marrow fat accumulation in aged mice. Conclusions Our findings demonstrated that Alkbh1 regulated BMSCs fate and bone‐fat balance during skeletal aging and provided a potential target for the treatment of osteoporosis.
Background Osteoporosis has gradually become a public health problem in the world. However, the exact molecular mechanism of osteoporosis still remains unclear. Senescence and osteogenic differentiation inhibition of bone marrow mesenchymal stem cells (BMSCs ) are supposed to play an important part in osteoporosis. Methods We used two gene expression profiles (GSE35956 and GSE35958) associated with osteoporosis and selected the promising gene Ubiquitin-conjugating enzyme E2 E3 (UBE2E3). We then verified its function and mechanism by in vitro experiments. Results UBE2E3 was highly expressed in the bone marrow and positively associated with osteogenesis related genes. Besides, UBE2E3 expression reduced in old BMSCs compared with that in young BMSCs. In in vitro experiments, knockdown of UBE2E3 accelerated cellular senescence and inhibited osteogenic differentiation of young BMSCs. On the other hand, overexpression of UBE2E3 attenuated cellular senescence as well as enhanced osteogenic differentiation of old BMSCs. Mechanistically, UBE2E3 might regulate the nuclear factor erythroid 2-related factor (Nrf2) and control its function, thus affecting the senescence and osteogenic differentiation of BMSCs. Conclusion UBE2E3 may be potentially involved in the pathogenesis of osteoporosis by regulating cellular senescence and osteogenic differentiation of BMSCs.
Senescence and altered differentiation potential of bone marrow stromal cells (BMSCs) lead to age-related bone loss. As an important posttranscriptional regulatory pathway, alternative splicing (AS) regulates the diversity of gene expression and has been linked to induction of cellular senescence. However, the role of splicing factors in BMSCs during aging remains poorly defined. Herein, we found that the expression of the splicing factor Y-box binding protein 1 (YBX1) in BMSCs decreased with aging in mice and humans. YBX1 deficiency resulted in mis-splicing in genes linked to BMSC osteogenic differentiation and senescence, such as Fn1, Nrp2, Sirt2, Sp7, and Spp1, thus contributing to BMSC senescence and differentiation shift during aging. Deletion of Ybx1 in BMSCs accelerated bone loss in mice, while its overexpression stimulated bone formation. Finally, we identified a small compound, sciadopitysin, which attenuated the degradation of YBX1 and bone loss in old mice. Our study demonstrated that YBX1 governs cell fate of BMSCs via fine control of RNA splicing and provides a potential therapeutic target for age-related osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.