In wireless sensor networks (WSNs), the assistance of exploiting the sink mobility to extend network lifetime have been well identified. This paper delivers an energy-efficient routing system stationed on the cluster-based approach considering obstacles for the mobile sink in WSNs. Based on cluster method, the node is elected as a cluster head which collects data from their respective cluster members and forwards the data to the mobile sink. In this paper, the mobile sink initiates the data-gather route periodically from the beginning site, then directly gets data from these cluster heads in a single-hop range, and lastly backs to the initial site. However, having obstacles in WSN's the complexity of the scheduling problem increases the traditional algorithms are difficult to resolve.
This paper proposes an energy-efficient routing mechanism by introducing intentional mobility to wireless sensor networks (WSNs) with obstacles. In the sensing field, Mobile Data Collectors (MDCs) can freely move for collecting data from sensors. An MDC begins its periodical movement from the base station and finally returns and transports the data to the base station. In physical environments, the sensing field may contain various obstacles. A research challenge is how to find an obstacle-avoiding shortest tour for the MDC. Firstly, we obtain the same size grid cells by dividing the network region. Secondly, according to the line sweep technique, the spanning graph is easily constructed. The spanning graph composed of some grid cells usually includes the shortest search path for the MDC. Then, based on the spanning graph, we can construct a complete graph by Warshall-Floyd algorithm. Finally, we present a heuristic
A quantized flocking control for a group of second-order multiple agents with obstacle avoidance is proposed to address the problem of the exchange of information needed for quantification. With a reasonable assumption, a logarithmic or uniform quantizer is used for the exchange of relative position and velocity information between adjacent agents and the virtual leader, moving at a steady speed along a straight line, and a distributed flocking algorithm with obstacle avoidance capability is designed based on the quantitative information. The Lyapunov stability criterion of nonsmooth systems and the invariance principle are used to prove the stability of these systems. The simulations and experiments are presented to demonstrate the feasibility and effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.