Highlights
We examine the effect of government responses of G7 countries to COVID-19.
We focus on reaction of G7 stock market returns.
We show the importance of lockdowns, travel bans, and economic stimulus.
Lockdowns resulted in cushioning the effects of COVID-19 most.
A potential route to extend Moore's law beyond the physical limits of existing materials and device architectures is to achieve nanotechnology breakthroughs in materials and device concepts. Here, we discuss an on-demand WO(3-x)-based nanoionic device where electrical and neuromorphic multifunctions are realized through externally induced local migration of oxygen ions. The device is found to possess a wide range of time scales of memorization, resistance switching, and rectification varying from volatile to permanent in a single device, and these can furthermore be realizable in both two- or three-terminal systems. The gradually changing volatile and nonvolatile resistance states are experimentally demonstrated to mimic the human brain's forgetting process for short-term memory and long-term memory.We propose this nanoionic device with its on-demand electrical and neuromorphic multifunction has a unique paradigm shifting potential for the fabrication of configurable circuits, analog memories, digital-neural fused networks, and more in one device architecture.
It has been proven that the use of colloidal templates is a facile, flexible strategy to create the periodic micro/nanostructured arrays in comparison with photolithography, electron beam lithography etc. Utilizing colloidal monolayers as templates or masks, different periodic micro/nanostructured arrays including nanoparticle arrays, pore arrays, nanoring arrays and nanorod/nanotube arrays can be fabricated by chemical and physical processes. Chemical routes, including direct solution/sol dipping strategy, wet chemical etching, electrodeposition, electrophoretic deposition etc. have advantages of simple operation and low costs. However, they have some disadvantages of impurities on surface of arrays due to incomplete decomposition of precursors, residue of surfactants in self-assembling or electrochemical deposition. More importantly, it is quite difficult to achieve very uniform morphology of micro/nanostructure arrays on a large-area by the above routes. Whereas another method, a physical route (for instance: reactive ion etching, pulsed laser deposition, thermal evaporation deposition, atomic layer deposition, sputtering deposition), combining with colloidal monolayer template can well resolve these problems. In this review, we focus on introducing the recent progress in creating micro/nanostructured arrays based on colloidal templates with physical routes. The parameters of the microstructure or nanostructure can be tuned by colloidal templates with different periodicity and experimental conditions of the physical processes. The applications of micro/nanostructured arrays with controllable morphology and arrangement parameters in self-cleaning surfaces, enhanced catalytic properties, field emitters etc. are also presented in the following sections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.