Metal halide perovskites have received much attention for their application in light-emitting diodes (LEDs) in the past several years. Rapid progress has been made in efficient green, red, and near-infrared perovskite LEDs. However, the development of blue perovskite LEDs is still lagging far behind. Here, we report efficient sky-blue perovskite LEDs by rearranging low-dimensional phase distribution in quasi-2D perovskites. We incorporated sodium ions into the mixed-Cl/Br quasi-2D perovskites with phenylethylammonium as the organic spacer and cesium lead halide as the inorganic framework. The inclusion of the sodium ion was found to significantly reduce the formation of the n = 1 phase, which was dominated by nonradiative transition, and increase the formation of other small-n phases for efficient exciton energy transfer. By managing the phase distribution, a maximum external quantum efficiency (EQE) of 11.7% was achieved in the sky-blue perovskite LED, with a stable emission peak at 488 nm. Further optimizing the phase distribution and film morphology with Pb content, we demonstrated the sky-blue devices with the average EQE approaching 10%. This strategy of engineering phase distribution of quasi-2D perovskites with a sodium ion could provide a useful way for the fabrication of high-performance blue perovskite LEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.