Carbon dots (CDs) with red-emitting room-temperature phosphorescence (RTP) are rarely reported because of the increasing nonradiative decay of the excited states and the decreasing energy gap between the excited states and ground states. Herein, we demonstrate a facile strategy for modulating the RTP properties of CDs in terms of donor–acceptor energy transfer (EnT) in the CDs-in-zeolite system. Upon tuning of the heteroatoms (Zn 2+ , Mn 2+ ) doped in the aluminophosphate zeolite frameworks, CDs@zeolite composites with green and red phosphorescence have been prepared via in situ hydrothermal synthesis. In such composites, the zeolite matrix provides an efficient confinement role in stabilizing the triplet states of CDs. Significantly, the Mn-doped zeolite could act as an energy acceptor allowing EnT from excitons of CDs to the dopant in the host matrix, generating the intriguing red RTP behavior. This work provides an effective strategy for developing CD-based composite materials with special RTP emissions as well as new fields for applications.
High‐efficiency red room‐temperature phosphorescence (RTP) emissions have been achieved by embedding carbon dots (CDs) in crystalline Mn‐containing open‐framework matrices. The rationale of this strategy relies on two factors: 1) the carbon source, which affects the triplet energy levels of the resulting CDs and thus the spectral overlap and 2) the coordination geometry of the Mn atoms in the crystalline frameworks, which determines the crystal‐field splitting and thus the emission spectra. Embedding the carbon dots into a matrix with 6‐coordinate Mn centers resulted in a strong red RTP with a phosphorescence efficiency of up to 9.6 %, which is higher than that of most reported red RTP materials. The composite material has an ultrahigh optical stability in the presence of strong oxidants, various organic solvents, and strong ultraviolet radiation. A green‐yellow RTP composite was also prepared by using a matrix with 4‐coordinate Mn centers and different carbon precursors.
The addition of Triton X-100 slows down the crystallization rate of TS-1, while the rota-crystallization accelerates the incorporation rate of Ti.
A facile strategy affording high-quality single-crystalline MFI-type nanozeolites (10–55 nm) with hexagonal prism morphology, good monodispersity, high crystallinity, and high product yield (above 97%) has been developed. This is achieved by synergistically using an l-lysine-assisted approach and a two-step crystallization process in a concentrated gel system (H2O/Si = 9). The morphological evolution of nanosized silicalite-1 is monitored by high-resolution transmission electron microscopy (HRTEM). In this process, metastable irregular nanoparticles are initially obtained at 80 °C as the first step. Consequently, a rearrangement in morphology toward equilibrium crystal shape and without excessive growth for the metastable nanoparticles occurs at 170 °C as the second step. Throughout the whole process, l-lysine acts as an inhibitor to effectively limit the crystal growth of zeolites. Thanks to the high-quality nanosized crystals, the as-prepared ZSM-5 catalysts exhibit superior performance in methanol-to-propylene (MTP) reactions, which deliver a prolonged lifetime of 54 h with a total light olefin selectivity of 74% and a high propylene selectivity of 49% at 470 °C at a high methanol weight hourly space velocity (WHSV) of 7.2 h–1. This synthetic route provides a general strategy for preparing other types of zeolites with good monodispersity, nanosize, high yield, and high crystallinity.
Nevertheless, large-scale and low-cost application of these technologies require further development of many key functional materials. Mesoporous nanomaterials show many architecture-dependent merits, stemming from the high surface areas, large pore sizes, and rich pore structures. [11-18] To be specific, high surface area could offer rich active sites for surface-related processes, such as surface adsorption/desorption and redox reactions. [19-23] Large pore sizes are particularly important for encapsulating guest materials and accommodating mechanical strains during the electrochemical processes. [14,24-26] Tunable pore structures offer great opportunities for the mass transport through the bulk of the material, thus tailoring the number of accessible active sites, surmounting the diffusion restriction in microporous or nonporous materials. [27] Here, we provide a comprehensive review of the development of mesoporous nanomaterials for electrochemical energy conversion and storage. First, a brief summary of synthetic methods for mesoporous nanomaterials is provided. The emphasis is placed on the preparation principles and formation mechanisms for fine tailoring of mesoporous nanomaterials over the particle sizes, pore sizes, and nanostructures. Afterward, we further discuss the applications as electrode materials for LIBs, SCs, water splitting devices, and fuel cells. Finally, we end this review with a perspective on the possible development directions and challenges of mesoporous nanomaterials for electrochemical energy-related applications. Mesoporous materials have attracted considerable attention because of their distinctive properties, including high surface areas, large pore sizes, tunable pore structures, controllable chemical compositions, and abundant forms of composite materials. During the last decade, there has been increasing research interest in constructing advanced mesoporous nanomaterials possessing short and open channels with efficient mass diffusion capability and rich accessible active sites for electrochemical energy conversion and storage. Here, the synthesis, structures, and energy-related applications of mesoporous nanomaterials are the main focus. After a brief summary of synthetic methods of mesoporous nanostructures, the delicate design and construction of mesoporous nanomaterials are described in detail through precise tailoring of the particle sizes, pore sizes, and nanostructures. Afterward, their applications as electrode materials for lithium-ion batteries, supercapacitors, water-splitting electrolyzers, and fuel cells are discussed. Finally, the possible development directions and challenges of mesoporous nanomaterials for electrochemical energy conversion and storage are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.