Synthesis of symmetrical sparse planar antenna arrays is introduced in this paper. In order to reduce the peak sidelobe level of the radiation pattern, the element positions of the arrays are optimized by invasive weed optimization with complex boundary conditions. The proposed algorithm changes a two‐dimensional optimization problem into a linear problem, which will reduce the complexity of the optimization procedure. The optimization method can constrain the size of the array aperture, the element number of the array, and the minimum spacing of the adjacent elements simultaneously. The simulation results show the robustness and effectiveness of the proposed method.
Pattern synthesis of non-uniform elliptical antenna arrays is presented in this paper. Only the element positions of the antenna arrays are optimized by the combination of differential evolution (DE) and invasive weed optimization (IWO) to reduce the peak side lobe level (PSLL) of the radiation pattern. In order to avoid the overlap of the array elements, the minimum spacing of the adjacent elements is constrained. Also, the beam width of the radiation pattern can be constrained effectively. Three elliptical antenna arrays that have 8, 12, and 20 elements are investigated. The synthesis results show that the introduced method can present a good side lobe reduction for the radiation pattern. Compared with other optimization methods, the method proposed in this paper can obtain better performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.