We aimed to elucidate the effects of iguratimod, a widely used anti-rheumatic drug with no severe side effects, on chronic experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Iguratimod was orally administered to mice immunised with myelin oligodendrocyte glycoprotein peptide 35–55. Preventive administration of iguratimod from the time of immunisation was found to markedly reduce the clinical severity of acute and chronic EAE. Pathologically, iguratimod treatment significantly reduced demyelination and infiltration of CD3+ T, F4/80+, and CD169+ cells into the spinal cord, and suppressed macrophage/microglia activation in the parenchyma at the acute and chronic stages compared with vehicle treatment. Therapeutic administration of iguratimod after the onset of clinical symptoms significantly ameliorated the clinical severity of chronic EAE and reduced demyelination, T helper (Th)1/Th17 cell infiltration, macrophage/microglia activation, and nuclear factor (NF)-κB p65 and cyclooxygenase-2 expression in the spinal cord. In vitro, iguratimod treatment inhibited nuclear translocation of NF-κB p65 and down-regulated pro-inflammatory responses in macrophages and microglia. Our results suggest that iguratimod ameliorates acute and chronic EAE by suppressing inflammatory cell infiltration and immune cell activation, partly through inhibition of NF-κB p65, supporting the therapeutic potential of this drug for not only acute, but also chronic MS.
Glial connexins (Cxs) form gap junction channels through which a pan-glial network plays key roles in maintaining homeostasis of the central nervous system (CNS). In multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), expression of astrocytic Cx43 is lost in acute lesions but upregulated in chronic plaques, while astrocytic Cx30 is very low in normal white matter and changes in its expression have not been convincingly shown. In Cx30 or Cx43 single knockout (KO) mice and even in Cx30/Cx43 double KO mice, acute EAE is unaltered. However, the effects of Cx30/Cx43 deficiency on chronic EAE remains to be elucidated. We aimed to clarify the roles of Cx30 in chronic neuroinflammation by studying EAE induced by myelin oligodendrocyte glycoprotein peptide 35–55 in Cx30 KO mice. We found that Cx30 deficiency improved the clinical symptoms and demyelination of chronic but not acute EAE without influencing CD3+ T cell infiltration. Furthermore, increased ramified microglia in the naïve state and induced earlier and stronger microglial activation in the acute and chronic phases of EAE was observed. These activated microglia had an anti-inflammatory phenotype, as shown by the upregulation of arginase-1 and brain-derived neurotrophic factor and the downregulation of nitric oxide synthase 2. In the naïve state, Cx30 deficiency induced modest enlargement of astrocytic processes in the spinal cord gray matter and a partial reduction of Cx43 expression in the spinal cord white matter. These astrocytes in Cx30 KO mice showed earlier and stronger activation during the acute phase of EAE, with upregulated A2 astrocyte markers and a significant decrease in Cx43 in the chronic phases. Spinal cord neurons and axons were more preserved in Cx30 KO mice than in littermates in the chronic phase of EAE. These findings suggest that Cx30 deficiency increased ramified microglia in the CNS in the naïve state and improved chronic EAE through redirecting microglia toward an anti-inflammatory phenotype, suggesting a hitherto unknown critical role of astrocytic Cx30 in regulating microglial number and functional state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.