Soybean is an important economic crop for human diet, animal feeds and biodiesel due to high protein and oil content. Its productivity is significantly hampered by salt stress, which impairs plant growth and development by affecting gene expression, in part, through epigenetic modification of chromatin status. However, little is known about epigenetic regulation of stress response in soybean roots. Here, we used RNA-seq and ChIP-seq technologies to study the dynamics of genome-wide transcription and histone methylation patterns in soybean roots under salt stress. Eight thousand seven hundred ninety eight soybean genes changed their expression under salt stress treatment. Whole-genome ChIP-seq study of an epigenetic repressive mark, histone H3 lysine 27 trimethylation (H3K27me3), revealed the changes in H3K27me3 deposition during the response to salt stress. Unexpectedly, we found that most of the inactivation of genes under salt stress is strongly correlated with the de novo establishment of H3K27me3 in various parts of the promoter or coding regions where there is no H3K27me3 in control plants. In addition, the soybean histone modifiers were identified which may contribute to de novo histone methylation and gene silencing under salt stress. Thus, dynamic chromatin regulation, switch between active and inactive modes, occur at target loci in order to respond to salt stress in soybean. Our analysis demonstrates histone methylation modifications are correlated with the activation or inactivation of salt-inducible genes in soybean roots.
The high-affinity potassium transporter (HKT) genes are essential for plant salt stress tolerance. However, there were limited studies on HKTs in maize (Zea mays), and it is basically unknown whether natural sequence variations in these genes are associated with the phenotypic variability of salt tolerance. Here, the characterization of ZmHKT1;5 was reported. Under salt stress, ZmHKT1;5 expression increased strongly in salt-tolerant inbred lines, which accompanied a better-balanced Na+/K+ ratio and preferable plant growth. The association between sequence variations in ZmHKT1;5 and salt tolerance was evaluated in a diverse population comprising 54 maize varieties from different maize production regions of China. Two SNPs (A134G and A511G) in the coding region of ZmHKT1;5 were significantly associated with different salt tolerance levels in maize varieties. In addition, the favorable allele of ZmHKT1; 5 identified in salt tolerant maize varieties effectively endowed plant salt tolerance. Transgenic tobacco plants of overexpressing the favorable allele displayed enhanced tolerance to salt stress better than overexpressing the wild type ZmHKT1;5. Our research showed that ZmHKT1;5 expression could effectively enhance salt tolerance by maintaining an optimal Na+/K+ balance and increasing the antioxidant activity that keeps reactive oxygen species (ROS) at a low accumulation level. Especially, the two SNPs in ZmHKT1;5 might be related with new amino acid residues to confer salt tolerance in maize.Key Message: Two SNPs of ZmHKT1;5 related with salt tolerance were identified by association analysis. Overexpressing ZmHKT1;5 in tobaccos showed that the SNPs might enhance its ability to regulating Na+/K+ homeostasis.
Maize (Zea mays L.) is a major staple crop worldwide, and during modern maize breeding, cultivars with increased tolerance to high-density planting and higher yield per plant have contributed significantly to the increased yield per unit land area. Systematically identifying key agronomic traits and their associated genomic changes during modern maize breeding remains a significant challenge because of the complexity of genetic regulation and the interactions of the various agronomic traits, with most of them being controlled by numerous small-effect quantitative trait loci (QTLs). Here, we performed phenotypic and gene expression analyses for a set of 137 elite inbred lines of maize from different breeding eras in China. We found four yield-related traits are significantly improved during modern maize breeding. Through gene-clustering analyses, we identified four groups of expressed genes with distinct trends of expression pattern change across the historical breeding eras. In combination with weighted gene co-expression network analysis, we identified several candidate genes regulating various plant architecture-and yield-related agronomic traits, such as ZmARF16, ZmARF34, ZmTCP40, ZmPIN7, ZmPYL10, ZmJMJ10, ZmARF1, ZmSWEET15b, ZmGLN6 and Zm00001d019150. Further, by combining expression quantitative trait loci (eQTLs) analyses, correlation coefficient analyses and population genetics, we identified a set of candidate genes that might have been under selection and contributed to the genetic improvement of various agronomic traits during modern maize breeding, including a number of known key regulators of plant architecture, flowering time and yieldrelated traits, such as ZmPIF3.3, ZAG1, ZFL2 and ZmBES1. Lastly, we validated the functional variations in GL15, ZmPHYB2 and ZmPYL10 that influence kernel row number, flowering time, plant height and ear height, respectively. Our results demonstrates the effectiveness of our combined approaches for uncovering key candidate regulatory genes and functional variation underlying the improvement of important agronomic traits during modern maize breeding, and provide a valuable genetic resource for the molecular breeding of maize cultivars with tolerance for high-density planting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.