This paper presents a novel Model Predictive Direct Power Control (MPDPC) approach for the pulse width modulation (PWM) rectifiers in the Aircraft Alternating Current Variable Frequency (ACVF) power system. The control performance of rectifiers may be largely affected by variations in the AC side impedance, especially for systems with limited power volume system. A novel idea for estimating the impedance variation based on the Bayesian estimation, using an algorithm embedded in MPDPC is presented in this paper. The input filter inductance and its equivalent series resistance (ESR) of PWM rectifiers are estimated in this algorithm by measuring the input current and input voltage in each cycle with the probability Bayesian estimation theory. This novel estimation method can overcome the shortcomings of traditional data based estimation methods such as least square estimation (LSE), which achieves poor estimation results with the small samples data set. In ACVF systems, the effect on the parameters estimation accuracy caused by the number of sampling points in one cycle is also analyzed in detail by simulation. The validity of this method is verified by the digital and Hard-in-loop simulation compared with other estimation methods such as the least square estimation method. The experimental testing results show that the proposed estimation algorithm can improve the robustness and the control performance of the MPDPC under the condition of the uncertainty of the AC side parameters of the three-phase PWM rectifiers in aircraft electrical power system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.