The study of phylogenetic conservatism in alpine plant phenology is critical for predicting climate change impacts; currently we have a poor understanding of how phylogeny and climate factors interactively influence plant phenology. Therefore, we explored the influence of phylogeny and climate factors on flowering phenology in alpine meadows. For two different types of alpine plant communities, we recorded phenological data, including flowering peak, first flower budding, first flowering, first fruiting and the flowering end for 62 species over the course of 5 years (2008-2012). From sequences in two plastid regions, we constructed phylogenetic trees. We used Blomberg's K and Pagel's lambda to assess the phylogenetic signal in phenological traits and species' phenological responses to climate factors. We found a significant phylogenetic signal in the date of all reproductive phenological events and in species' phenological responses to weekly day length and temperature. The number of species in flower was strongly associated with the weekly day lengths and followed by the weekly temperature prior to phenological activity. Based on phylogenetic eigenvector regression (PVR) analysis, we found a highly shared influence of phylogeny and climate factors on alpine species flowering phenology. Our results suggest the phylogenetic conservatism in both flowering and fruiting phenology may depend on the similarity of responses to external environmental cues among close relatives.
Groundwater, as the limiting resource in arid ecosystems, can have profound effects on the functional structure and distribution of plant communities. However, studies are too few to unveil the impacts of groundwater depth on plant functional traits in such communities. We collected data on vegetation, topography and soil properties from 180 quadrats (60 trees/shrubs and 120 herbaceous) in the desert-wetland ecosystem of Shule River Basin in Northwest China. We measured 10 key communitylevel functional traits, together with the resource topography (i.e., groundwater depth) and seven soil properties. We found that the increase of groundwater depth significantly reduced community-level specific leaf area and maximum leaf photosynthesis rate, while boosted leaf dry mass content and leaf thickness. However, the leaf phosphorus content remained relatively stable. By contrast, with the increase of groundwater depth, soil carbon, soil nitrogen, soil phosphorus and total dissolved salts first increased but then declined, while soil pH and soil bulk density exhibited the opposite trend. The soil moisture content decreased drastically with the decline of groundwater. The change in groundwater depth, thus, was found the main driver of species distribution in the arid zone, contributing 21.16%, followed by soil K + (9.94%) and soil total nitrogen content (4.9%), as well as a strong interaction of the three (41.7%). Changes in groundwater depth can thus alter the structure and nutrient enrichment of the soil, which in turn affects the distribution of vegetation through water-soil-plant interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.