To meet their metabolic needs, starved cells first activate autophagy, but activation in parallel of the general amino acid control pathway increases amino acid uptake, leading to reactivation of mTOR and down-regulation of autophagy.
A stable passively mode-locked Er-doped silica fiber laser with a fundamental repetition rate of up to 5 GHz is demonstrated, which, to the best of our knowledge, is the highest repetition rate for 1.5 μm semiconductor saturable absorber mirror (SESAM) mode-locked Er-doped silica fiber (EDF) lasers. A segment of commercially available EDF with a net gain coefficient of 1 dB/cm is employed as gain medium. The compact Fabry-Pérot (FP) cavity features a fiber mirror, namely multiple-layer dielectric films (DFs) directly coated on end facet of a passive fiber ferrule, enabling a short cavity length of 2 cm configured. The mode-locked oscillator operates at 1561.0 nm with a signal-to-noise ratio (SNR) of 62.1 dB, whose average power is boosted to 27 mW by a single-mode Er-doped fiber amplifier (EDFA) and spectral bandwidth is broadened form 0.69 nm to 1.16 nm with a pulse width of 3.86 ps. The fiber laser shows excellent spectral stability without conspicuous wavelength drifting for 3 hours. Moreover, the basic guidelines of selecting SESAM for high repetition rate passively mode-locked fiber lasers is given.
A widely wavelength tunable mode-locked Yb-doped fiber oscillator based on nonlinear amplifier loop mirror (NALM) is reported, in which only a piece of short (∼0.5 m) single-mode polarization-maintaining (PM) Yb-doped fiber is employed, instead of the frequently used long (a few meters) double cladding (DC) fiber in previous papers. Experimentally, the center wavelength can be consecutively tuned from 1015 to 1105 nm by tilting the silver mirror, corresponding to a tuning range of 90 nm. To the best of our knowledge, this is the broadest consecutive tuning range in Yb:fiber mode-locked fiber oscillator. In addition, the mechanism of wavelength tuning is tentatively analyzed and attributed to the combined action of the spatial dispersion induced by a tilting silver mirror and the limited aperture in the system. Specific to the wavelength of 1045 nm, the output pulses with 13-nm spectral bandwidth can be compressed to 154 fs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.