PRRSV causes major economic loss in global swine industry. 41 of 131 (31.29%) tissue samples collected from pig farms in central and east China from 2016 to 2017 were confirmed as PRRSV positive in RT-PCR. Base on phylogenetic analysis for ORF5 and ORF6, 3 isolates closely related to QYYZ strain form a new subgroup IV, while 3 other ones were clustered into subgroup III, represented by NADC30. Numerous amino acid substitutions involved in viral neutralization susceptibility were identified in GP5 among these isolates. Two emerging PRRSV strains (ZJnb16-2, SDbz16-2) were successfully isolated and sequenced. ZJnb16-2 was identified as a recombinant virus between strain QYYZ and JXA1 while SDbz16-2 was an inter-subgenotype recombinant virus of strains NADC30 and JXA1. As shown in the pathogenicity evaluation in piglets, ZJnb16-2 is highly pathogenic while SDbz16-2 is mild. Hyper-immune sera against major vaccine strains HUN4-F112 and JK-100 failed to neutralize either ZJnb16-2 or SDbz16-2. Only 0.8–2.0% of pig serum samples which were confirmed as PRRSV-positive with commercial ELISA kits presented neutralization reactivity against either ZJnb16-2 or SDbz16-2. The study confirmed that the viral genomic recombination contributes to the emergence of new pathogenic PRRSVs in China, which may escape from the protective immunity elicited by the conventional vaccines, highlighting the necessity in updates of vaccine strains and the need for a universal vaccine against PRRSV.
Background: Outbreaks of Classical swine fever virus (CSFV) cause significant economic losses in the swine industry. Vaccination is the major method to prevent and control the disease. As live attenuated vaccines fail to elicit differentiable immunity between infected and vaccinated animals, subunit vaccine was considered as an alternative candidate to prevent and eradicate CSFV. Subunit vaccines present advantages in DIVA immunogenicity and safety. The technology was limited due to the low yield and the high cost with multiple and large doses. The native E2 signal peptide has not been well defined before. Here, the aim of this study is to develop a cost-effective and efficacious E2 vaccine candidate against CSFV with signal peptide and E2 sequence selection. Results: A novel CSFV E2 sequence (E2ZJ) was identified from an epidemic strain of Zhejiang for outstanding secretion in baculovirus and enhanced immunogenicity. E2 secretion induced with the selected signal peptide, SPZJ (SP23), increase at least 50% as compared to any other signal peptides tested. Besides, unique antigenic features were identified in E2ZJ. As indicated with immunized sera in IFA against CSFV infection, E2ZJ elicited CSFV antibodies at the earlier stage than other E2 types tested in mice. Moreover, higher level of neutralizing and CSFV antibodies against CSFV with E2ZJ was detected than other E2s with the same dosage at 28 dpi. Further, E2ZJ successfully elicited neutralizing immunity in piglets. A single dose of 5 μg of E2ZJ was sufficient to induce protective antibodies against CSFV in piglets and provided 100% protection against lethal virus challenge. Conclusions: Our studies provide evidence that E2ZJ guided by a novel E2 signal peptide (SPZJ) was efficiently secreted and presented significantly improved immunogenicity than conventional E2 vaccines. Moreover, a single dose of 5 μg E2ZJ is efficacious against CSFV in piglets.
Porcine reproductive and respiratory syndrome (PRRS) is an important economically disease affecting the swine industry worldwide and was first reported in 1987 in the United States (Keffaber, 1989). The causative agent is porcine reproductive and respiratory syndrome virus (PRRSV) (Firth et al., 2011). PRRSV is a single-stranded RNA virus, and its genome length is approximately 15.4 kb containing a 5′untranslated region (UTR), at least 11 open reading frames (ORFs), a 3′-UTR and a
Classical swine fever virus (CSFV) is a highly contagious pathogen, which pose continuous threat to the swine industry. Though most attenuated vaccines are effective, they fail to serologically distinguish between infected and vaccinated animals, hindering CSFV eradication. Beneficially, nanoparticles (NPs)-based vaccines resemble natural viruses in size and antigen structure, and offer an alternative tool to circumvent these limitations. Using self-assembling NPs as multimerization platforms provides a safe and immunogenic tool against infectious diseases. This study presented a novel strategy to display CSFV E2 glycoprotein on the surface of genetically engineered self-assembling NPs. Eukaryotic E2-fused protein (SP-E2-mi3) could self-assemble into uniform NPs as indicated in transmission electron microscope (TEM) and dynamic light scattering (DLS). SP-E2-mi3 NPs showed high stability at room temperature. This NP-based immunization resulted in enhanced antigen uptake and up-regulated production of immunostimulatory cytokines in antigen presenting cells (APCs). Moreover, the protective efficacy of SP-E2-mi3 NPs was evaluated in pigs. SP-E2-mi3 NPs significantly improved both humoral and cellular immunity, especially as indicated by the elevated CSFV-specific IFN-γ cellular immunity and >10-fold neutralizing antibodies as compared to monomeric E2. These observations were consistent to in vivo protection against CSFV lethal virus challenge in prime-boost immunization schedule. Further results revealed single dose of 10 μg of SP-E2-mi3 NPs provided considerable clinical protection against lethal virus challenge. In conclusion, these findings demonstrated that this NP-based technology has potential to enhance the potency of subunit vaccine, paving ways for nanovaccine development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.