BackgroundAs a main staple food, rice is also a model plant for functional genomic studies of monocots. Decoding of every DNA element of the rice genome is essential for genetic improvement to address increasing food demands. The past 15 years have witnessed extraordinary advances in rice functional genomics. Systematic characterization and proper deposition of every rice gene are vital for both functional studies and crop genetic improvement.FindingsWe built a comprehensive and accurate dataset of ∼2800 functionally characterized rice genes and ∼5000 members of different gene families by integrating data from available databases and reviewing every publication on rice functional genomic studies. The dataset accounts for 19.2% of the 39 045 annotated protein-coding rice genes, which provides the most exhaustive archive for investigating the functions of rice genes. We also constructed 214 gene interaction networks based on 1841 connections between 1310 genes. The largest network with 762 genes indicated that pleiotropic genes linked different biological pathways. Increasing degree of conservation of the flowering pathway was observed among more closely related plants, implying substantial value of rice genes for future dissection of flowering regulation in other crops. All data are deposited in the funRiceGenes database (https://funricegenes.github.io/). Functionality for advanced search and continuous updating of the database are provided by a Shiny application (http://funricegenes.ncpgr.cn/).ConclusionsThe funRiceGenes dataset would enable further exploring of the crosslink between gene functions and natural variations in rice, which can also facilitate breeding design to improve target agronomic traits of rice.
BackgroundThe dispensable genome of a species, consisting of the dispensable sequences present only in a subset of individuals, is believed to play important roles in phenotypic variation and genome evolution. However, construction of the dispensable genome is costly and labor-intensive at present, and so the influence of the dispensable genome in genetic and functional genomic studies has not been fully explored.ResultsWe construct the dispensable genome of rice through a metagenome-like de novo assembly strategy based on low-coverage (1–3×) sequencing data of 1483 cultivated rice (Oryza sativa L.) accessions. Thousands of protein-coding genes are successfully assembled, including most of the known agronomically important genes absent from the Nipponbare rice reference genome. We develop an integration approach based on alignment and linkage disequilibrium, which is able to assign genomic positions relative to the reference genome for more than 78.2 % of the dispensable sequences. We carry out association mapping studies for rice grain width and 840 metabolic traits using 0.46 million polymorphisms between the dispensable sequences of different rice accessions. About 23.5 % of metabolic traits have more significant association signals with polymorphisms from dispensable sequences than with SNPs from the reference genome, and 41.6 % of trait-associated SNPs have concordant genomic locations with associated dispensable sequences.ConclusionsOur results suggest the feasibility of building a species’ dispensable genome using low-coverage population sequencing data. The constructed sequences will be helpful for understanding the rice dispensable genome and are complementary to the reference genome for identifying candidate genes associated with phenotypic variation.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0757-3) contains supplementary material, which is available to authorized users.
Tiller angle is one of the most important components of the ideal plant architecture that can greatly enhance rice grain yield. Understanding the genetic basis of tiller angle and mining favorable alleles will be helpful for breeding new plant-type varieties. Here, we performed genome-wide association studies (GWAS) to identify genes controlling tiller angle using 529 diverse accessions of Oryza sativa including 295 indica and 156 japonica accessions in two environments. We identified 7 common quantitative trait loci (QTLs), including the previously reported major gene Tiller Angle Control 1 (TAC1), in the two environments, 10 and 13 unique QTLs in Hainan and Wuhan, respectively. More QTLs were identified in indica than in japonica, and three major QTLs (qTA3, qTA1b/DWARF2 (D2) and qTA9c/TAC1) were fixed in japonica but segregating in indica, which explained the wider variation observed in indica compared with that in japonica. No common QTLs were identified between the indica and japonica subpopulations. Mutant analysis for the candidate gene of qTA3 on chromosome 3 indicated a novel gene, Tiller Angle Control 3 (TAC3), encoding a conserved hypothetical protein controlling tiller angle. TAC3 is preferentially expressed in the tiller base. The ebisu dwarf (d2) mutant exhibited a decreased tiller angle, in addition to its previously described abnormal phenotype. A nucleotide diversity analysis revealed that TAC3, D2 and TAC1 have been subjected to selection during japonica domestication. A haplotype analysis identified favorable alleles of TAC3, D2 and TAC1, which may be used for breeding plants with an ideal architecture. In conclusion, there is a diverse genetic basis for tiller angle between the two subpopulations, and it is the novel gene TAC3 together with TAC1, D2, and other newly identified genes in this study that controls tiller angle in rice cultivars.
CCT domain-containing genes generally control flowering in plants. Currently, only six of the 41 CCT family genes have been confirmed to control flowering in rice. To efficiently identify more heading date-related genes from the CCT family, we compared the positions of heading date QTLs and CCT genes and found that 25 CCT family genes were located in the QTL regions. Association mapping showed that a total of 19 CCT family genes were associated with the heading date. Five of the seven associated genes within QTL regions and two of four associated genes outside of the QTL regions were confirmed to regulate heading date by transformation. None of the seven non-associated genes outside of the QTL regions regulates heading date. Obviously, combination of candidate gene-based association mapping with linkage analysis could improve the identification of functional genes. Three novel CCT family genes, including one non-associated (OsCCT01) and two associated genes (OsCCT11 and OsCCT19) regulated the heading date. The overexpression of OsCCT01 delayed flowering through suppressing the expression of Ehd1, Hd3a and RFT1 under both long day and short day conditions. Potential functions in regulating heading date of some untested CCT family genes were discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.