To evaluate the performance of a deep learning-based algorithm for automatic detection and labeling of rib fractures from multicenter chest CT images. Materials and Methods: This retrospective study included 10 943 patients (mean age, 55 years; 6418 men) from six hospitals (January 1, 2017 to December 30, 2019), which consisted of patients with and without rib fractures who underwent CT. The patients were separated into one training set (n = 2425), two lesion-level test sets (n = 362 and 105), and one examination-level test set (n = 8051).Free-response receiver operating characteristic (FROC) score (mean sensitivity of seven different false-positive rates), precision, sensitivity, and F1 score were used as metrics to assess rib fracture detection performance. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were employed to evaluate the classification accuracy. The mean Dice coefficient and accuracy were used to assess the performance of rib labeling.
Results:In the detection of rib fractures, the model showed an FROC score of 84.3% on test set 1.
With the urgent demand for generalized deep models, many pre-trained big models are proposed, such as bidirectional encoder representations (BERT), vision transformer (ViT), generative pre-trained transformers (GPT), etc. Inspired by the success of these models in single domains (like computer vision and natural language processing), the multi-modal pre-trained big models have also drawn more and more attention in recent years. In this work, we give a comprehensive survey of these models and hope this paper could provide new insights and helps fresh researchers to track the most cutting-edge works. Specifically, we firstly introduce the background of multi-modal pre-training by reviewing the conventional deep learning, pre-training works in natural language process, computer vision, and speech. Then, we introduce the task definition, key challenges, and advantages of multi-modal pre-training models (MM-PTMs), and discuss the MM-PTMs with a focus on data, objectives, network architectures, and knowledge enhanced pre-training. After that, we introduce the downstream tasks used for the validation of large-scale MM-PTMs, including generative, classification, and regression tasks. We also give visualization and analysis of the model parameters and results on representative downstream tasks. Finally, we point out possible research directions for this topic that may benefit future works. In addition, we maintain a continuously updated paper list for large-scale pre-trained multi-modal big models: https://github.com/wangxiao5791509/MultiModal_BigModels_Survey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.