Ice cloud particles exhibit a range of shapes and sizes affecting a cloud’s single-scattering properties. Because they cannot be inferred from passive visible/infrared imager measurements, assumptions about the bulk single-scattering properties of ice clouds are fundamental to satellite cloud retrievals and broadband radiative flux calculations. To examine the sensitivity to ice particle model assumptions, three sets of models are used in satellite imager retrievals of ice cloud fraction, thermodynamic phase, optical depth, effective height, and particle size, and in top-of-atmosphere (TOA) and surface broadband radiative flux calculations. The three ice particle models include smooth hexagonal ice columns (SMOOTH), roughened hexagonal ice columns, and a two-habit model (THM) comprising an ensemble of hexagonal columns and 20-element aggregates. While the choice of ice particle model has a negligible impact on daytime cloud fraction and thermodynamic phase, the global mean ice cloud optical depth retrieved from THM is smaller than from SMOOTH by 2.3 (28%), and the regional root-mean-square difference (RMSD) is 2.8 (32%). Effective radii derived from THM are 3.9 μm (16%) smaller than SMOOTH values and the RMSD is 5.2 μm (21%). In contrast, the regional RMSD in TOA and surface flux between THM and SMOOTH is only 1% in the shortwave and 0.3% in the longwave when a consistent ice particle model is assumed in the cloud property retrievals and forward radiative transfer model calculations. Consequently, radiative fluxes derived using a consistent ice particle model assumption throughout provide a more robust reference for climate model evaluation compared to ice cloud property retrievals.
Ice particle morphology and microphysical properties of cirrus clouds are essential for assessing radiative forcing associated with these clouds. We develop an optimal estimation‐based algorithm to infer cirrus cloud optical thickness (COT), cloud effective radius (CER), plate fraction including quasi‐horizontally oriented plates (HOPs), and the degree of surface roughness from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Infrared Imaging Radiometer (IIR) on the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) platform. A simple but realistic ice particle model is used, and the relevant bulk optical properties are computed using state‐of‐the‐art light‐scattering computational capabilities. Rigorous estimation of uncertainties related to surface properties, atmospheric gases, and cloud heterogeneity is performed. The results based on the present method show that COTs are quite consistent with other satellite products and CERs essentially agree with the other counterparts. A 1 month global analysis for April 2007, in which CALIPSO off‐nadir angle is 0.3°, shows that the HOP has significant temperature‐dependence and is critical to the lidar ratio when cloud temperature is warmer than −40°C. The lidar ratio is calculated from the bulk optical properties based on the inferred parameters, showing robust temperature dependence. The median lidar ratio of cirrus clouds is 27–31 sr over the globe.
We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape-decreases and then increases-with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element-P12 for scattering angles between 20°-120°, whereas surface roughness has a much weaker effect, increasing-P12 slightly from 60°-120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.