Allelopathy has been regarded as a mechanism for successful exotic plant invasion. However, it is not clear if and what effects of allelopathic substances may exert on soil nutrient. The exotic plant Mikania micrantha H.B.K. (M. micrantha) has invaded many forests in south China, and recent studies have suggested it has allelopathic potential for other plants and soil microbial community. Thus, we hypothesized that M. micrantha could influence soil nutrients and N transformation through allelopathy. We measured total C and N, NO 3 -, NH 4 + and pH of the soil beneath M. micrantha and the adjacent open soil, and then measured the above soil properties after treating soil with 3 concentrations of aqueous extracts of M. micrantha (T 1 : 0.005 g ml -1 ; T 2 : 0.025 g ml -1 ; T 3 : 0.100 g ml -1 ). In addition, a bioassay was conducted to determine the allelopathic potential of the soil beneath M. micrantha. The results showed that M. micrantha significantly affected soil nutrients and N transformation. Soil beneath M. micrantha had inhibitory effects on seed germination and seedling growth of test plant, and had significantly higher C, N, ammonia, net nitrification rate than those of open soil. The plant extracts decreased soil pH, and T 1 decreased it the most, and it increased soil C and N, and T 1 represented the greatest increase in both C and N. The extracts also increased both NO 3 -and NH 4 + in soil, whereas no significant difference existed among the 3 extract treatments. Compared to the water control, the soil net mineralization rate was higher under T 1 , while lower under T 2 and T 3 . However, the extracts increased the soil nitrification rates under all the treatments (T 1 , T 2 and T 3 ). Our results suggest that the water soluble allelochemicals of M. micrantha improve soil nutrient availability, through which the invasive plant M. micrantha may successfully invade and establish in new habitats.
Micromonas strains of small prasinophyte green algae are found throughout the world’s oceans, exploiting widely different niches. We grew arctic and temperate strains of Micromonas and compared their susceptibilities to photoinactivation of Photosystem II, their counteracting Photosystem II repair capacities, their Photosystem II content, and their induction and relaxation of non-photochemical quenching. In the arctic strain Micromonas NCMA 2099, the cellular content of active Photosystem II represents only about 50 % of total Photosystem II protein, as a slow rate constant for clearance of PsbA protein limits instantaneous repair. In contrast, the temperate strain NCMA 1646 shows a faster clearance of PsbA protein which allows it to maintain active Photosystem II content equivalent to total Photosystem II protein. Under growth at 2 °C, the arctic Micromonas maintains a constitutive induction of xanthophyll deepoxidation, shown by second-derivative whole-cell spectra, which supports strong induction of non-photochemical quenching under low to moderate light, even if xanthophyll cycling is blocked. This non-photochemical quenching, however, relaxes during subsequent darkness with kinetics nearly comparable to the temperate Micromonas NCMA 1646, thereby limiting the opportunity cost of sustained downregulation of PSII function after a decrease in light.
The ability to competitively suppress native species is key to successful invasion. Since invasions involve an increase in abundance or dominance of a species in its non-native range, competitive effects might be expected to be stronger in the nonnative range of an invader; however, there have been few comparisons of the competitive effects of invasive plants on species from invaded ranges versus species from native ranges. We compared the competitive and allelopathic effects of Acroptilon repens on native North American species to effects on related species from the native range of Acroptilon in Uzbekistan. We also compared the competitive interactions among these North American and Eurasian species, in the absence of Acroptilon, examining the hypothesis that particular regional species pools may show differences in competitive ability. The results showed that Acroptilon had stronger competitive effects against native North American species than against species native to Uzbekistan. There was no difference in the competitive effects among Eurasians and North Americans. The effects of leachates collected from Acroptilon roots were weak but more negative on species from North America than on species from Uzbekistan. Our results suggest that inherently stronger competitive and allelopathic effects of Acroptilon on North American plants than on plants from its native range may contribute to its invasive success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.