The maize field environment is complex. Weeds and maize have similar colors and may overlap, and lighting and weather conditions vary. Thus, many methods for the automated differentiation of maize and weeds achieve poor segmentation or cannot be used in real time. In this paper, a weed recognition model based on improved Swin-Unet is proposed. The model first performs semantic segmentation of maize seedlings and uses the resulting mask to identify weeds. U-Net acts as the semantic segmentation framework, and a Swin transformer module is introduced to improve performance. DropBlock regularization, which randomly hides some blocks in crop feature maps, is applied to enhance the generalization ability of the model. Finally, weed areas are identified and segmented with the aid of an improved morphological processing algorithm. The DeepLabv3+, PSANet, Mask R-CNN, original Swin-Unet, and proposed models are trained on a dataset of maize seedling images. The proposed Swin-Unet model outperforms the others, achieving a mean intersection over union of 92.75%, mean pixel accuracy of 95.57%, and inference speed of 15.1 FPS. Our model could be used for accurate, real-time segmentation of crops and weeds and as a reference for the development of intelligent agricultural equipment.
The real-time performance of target tracking, detection, and positioning behaves not well for non-Gaussian and nonlinear model with circumstance uncertainty. The weak observability of the system under large noise causes the algorithm unstable and slow to converge. A new estimation algorithm combining square-root cubature Kalman filter (SRCKF) with simultaneous localization and mapping (SLAM) is proposed. By connecting neural network weights, network input, functional types and ideal output network, the algorithm firstly update iteratively the SRCKF-SLAM state model and observation model, then conduct the cubature point estimate (weights) neural network framework. Thus, a point set better representing the target state and a more accurate state estimation are achieved, which can improve the filtering accuracy. This paper also estimates robot and characteristic states by filtering in groups. The simulation results showed that the proposed algorithm is feasible and effective. Compared with other filtering algorithms such as SRUKF and SRCDKF, it improves the estimation accuracy. Applying the new algorithm to the position filtering estimation of mobile robot can effectively reduce the positioning error, achieve high-precision tracking detection, and improve the accuracy of robot target detection.
Non-invasive load monitoring (NILM) represents a crucial technology in enabling smart electricity consumption. In response to the challenges posed by high feature redundancy, low identification accuracy, and the high computational costs associated with current load identification models, a novel load identification model based on kernel principal component analysis (KPCA) and random forest (RF) optimized by improved Grey Wolf Optimizer (IGWO) is proposed. Initially, 17 steady-state load characteristics were selected as discrimination indexes. KPCA was subsequently employed to reduce the dimension of the original data and diminish the correlation between the feature indicators. Then, the dimension reduction in load data was classified by RF. In order to improve the performance of the classifier, IGWO was used to optimize the parameters of the RF classifier. Finally, the proposed model was implemented to identify 25 load states consisting of seven devices. The experimental results demonstrate that the identification accuracy of this method is up to 96.8% and the Kappa coefficient is 0.9667.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.