Adenine nucleotides and malondialdehyde (MDA) are key components involved in energy metabolism and reactive oxygen species (ROS) production. Measuring the levels of these components at the same time would be critical in studying mitochondrial functions. We have established a HPLC method to simultaneously measure adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, MDA, and uric acid (UA). The samples were treated with perchloric acid followed by centrifugation. After neutralization, the supernatant was subjected to HPLC determination.HPLC was performed using a C18 chromatographic column, isocratic elusion, and UV detection. The detection and quantification limits for these components were determined with standard solutions. The precision, repeatability, and 24-h stability were evaluated using cellular samples, and their relative standard deviations were all within 2%. The reproducibility and efficiency were confirmed with sample recovery tests and the observed oxidative effects of H 2 O 2 on Jurkat cells. With this method, we discovered the dependence of energy and oxidative states on the density of Jurkat cells cultured in suspension. We also found a significant correlation between UA in serum and that in saliva. These results indicate that this method has good accuracy and applicability. It can be used in biological, pharmacological, and clinical studies, especially those involving mitochondria, ROS, and purinergic signaling.
Body constitution in traditional Chinese medicine (TCM) refers to the holistic and relatively durable state of an individual, based on the qi and blood assessment, and TCM syndrome is defined as the theoretical abstraction of disease-symptom profiles. The biological basis as related to mitochondria, which produce most of the cellular energy, has not been well studied. This study aimed to elucidate the association of mitochondrial function with TCM body constitution and cold syndrome. Body constitution and cold syndrome in TCM were assessed using the Constitution in Chinese Medicine Questionnaire (CCMQ). The mitochondrial function of peripheral leukocytes was evaluated based on oxygen consumption rate (OCR) and enzyme activity; OCR reflects mitochondrial activity and the capacity to produce adenosine triphosphate (ATP). Cellular adenosine nucleotides and malondialdehyde levels were determined using high-performance liquid chromatography to assess the potential bioenergetic mechanisms. A total of 283 adults participated in this study. Leukocytes from subjects with a balanced constitution had higher OCRs than those with unbalanced constitutions. Yang deficiency and cold syndrome also demonstrated lower energy metabolism, as indicated by reduced basal metabolic rate and cellular levels of ATP and malondialdehyde. Decreased mitochondrial enzyme activity has been observed in individuals with the cold syndrome. Unbalanced body constitutions in TCM impair mitochondrial function in leukocytes, which may contribute to the high disease susceptibility. Cold syndrome is characterized by reduced mitochondrial mass, which may explain its symptoms of low-energy metabolism and cold intolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.