We report a galinstan-based inkjet printing system to realize highly stretchable electronics with self-healing capability. The printing head made of polydimethylsiloxane (PDMS) consists of a main microfluidic channel and a coplanar channel. The main channel containing the oxidized galinstan is surrounded by the coplanar channel, which is filled with HCl. The HCl vapor effectively permeates the channel wall due to the high gas permeability of PDMS. The oxide skin of galinstan is consistently removed by chemical reaction with the HCl vapor. This allows one to maintain galinstan in a true liquid phase in the main channel. After the fabrication of the printing head with PDMS, the sizes of droplets ejected from the printing head with various flow rates have been characterized. The fabricated inkjet printing system is also utilized to generate complex galinstan patterns on various substrates. An LED-integrated circuit with self-healing capability shows excellent electrical and mechanical performance even after it is twisted more than 180° or stretched up to ∼60% more than 2000 times. The experimental results reveal that the proposed system has tremendous potential for stretchable electronic applications in the future.
This paper presents a novel stretchable pulse sensor fabricated by a selective liquid-metal plating process (SLMP), which can conveniently attach to the human skin and monitor the patient's heartbeat. The liquid metal-based stretchable pulse sensor consists of polydimethylsiloxane (PDMS) thin films and liquid metal functional circuits with electronic elements that are embedded into the PDMS substrate. In order to verify the utility of the fabrication process, various complex liquid-metal patterns are achieved by using the selective wetting behavior of the reduced liquid metal on the Cu patterns of the PDMS substrate. The smallest liquid-metal pattern is approximately 2 μm in width with a uniform surface. After verification, a transparent flowing LED light with programmed circuits is realized and exhibits stable mechanical and electrical properties under various deformations (bending, twisting and stretching). Finally, based on SLMP, a wireless pulse measurement system is developed which is composed of the liquid metal-based stretchable pulse sensor, a Bluetooth module, an Arduino development board, a laptop computer and a self-programmed visualized software program. The experimental results reveal that the portable non-invasive pulse sensor has the potential to reduce costs, simplify biomedical diagnostic procedures and help patients to improve their life in the future.
Galinstan has the potential to replace mercury - one of the most popular liquid metals. However, the easy oxidation of Galinstan restricts wide applicability of the material. In this paper, we report an effective reduction method for the oxidized Galinstan using gas permeable PDMS (polydimethlysiloxane)-based microfluidic channel. The complete study is divided into two parts - reduction of Galinstan oxide and behavior of reduced Galinstan oxide in a microfluidic channel. The reduction of Galinstan oxide is discussed on the basis of static as well as dynamic angles. The contact angle analyses help to find the extent of reduction by wetting characteristics of the oxide, to optimize PDMS thickness and to select suitable hydrochloric acid (HCl) concentration. The highest advancing angle of 155° and receding angle of 136° is achieved with 200 μm thick PDMS film and 37 wt% (weight percent) HCl solution. The behavior of reduced Galinstan oxide is analyzed in PDMS-based coplanar microfluidic channels fabricated using a simple micromolding technique. Galinstan in the microfluidic channel is surrounded by another coplanar channel filled with HCl solution. Due to the excellent permeability of PDMS, HCl permeates through the PDMS wall between the two channels (interchannel PDMS wall) and achieves a continuous chemical reaction with oxidized Galinstan. A Lab VIEW controlled syringe pump is used for observing the behavior of HCl treated Galinstan in the microfluidic channel. Further optimization of the microfluidic device has been conducted to minimize the reoxidation of reduced Galinstan oxide in the microfluidic channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.