A novel microplasma molecular emission spectrometer based on an atmospheric pressure dielectric barrier discharge (DBD) is described and further used as a promising multichannel GC detector for halohydrocarbons. The plasma is generated in a DBD device consisting of an outer electrode (1.2 mm in diameter) and an inner electrode (1.7 mm in diameter) within a small quartz tube (3.0 mm i.d. × 5.0 mm o.d. × 50 mm), wherein analyte molecules are excited by the microplasma to generate molecular emission. Therefore, the analytes are selectively and simultaneously detected with a portable charge-coupled device (CCD) via multichannel detection of their specific emission lines. The performance of this method was evaluated by separation and detection of a model mixture of chlorinated hydrocarbons (CHCl(3) and CCl(4)), brominated hydrocarbons (CH(2)Br(2) and CH(2)BrCH(2)Br), and iodinated hydrocarbons (CH(3)I and (CH(3))(2)CHI) undergoing GC with the new detector. The completely resolved identification of the tested compounds was achieved by taking advantages of both chromatographic and spectral resolution. Under the optimized conditions with the CCD spectrometer set at 258, 292, and 342 nm channels for determination of chlorinated hydrocarbons, brominated hydrocarbons, and iodinated hydrocarbons, respectively, this detector with direct injection provided detection limits of 0.07, 0.06, 0.3, 0.04, 0.05, and 0.02 μg mL(-1) for CCl(4), CHCl(3), CH(2)Cl(2), CH(3)I, CH(3)CH(2)I, and (CH(3))(2)CHI, respectively.
Aim: To find biomarkers for immunity and immunotherapy in lung adenocarcinoma (LUAD) through multiomics analysis. Materials & methods: The multiomics data of patients with LUAD were downloaded from the TCGA and GEO databases. CIBERSORT, quanTIseq, ESTIMATEScore, k-means clustering, gene set enrichment analysis, gene set variation analysis, immunophenoscore and logistic regression were used in this study. Results: PSMB8 HypoMet-HighExp group patients have more active immune-related pathways, more antitumor immune cells, less protumor immune cells, higher immunophenoscore and longer progression-free survival of immune checkpoint inhibitor therapy than HyperMet-LowExp group. In multivariate analysis, PSMB8 showed an independent value. Conclusion: The combination of DNA methylation and mRNA expression of PSMB8 could independently distinguish types of tumor immune microenvironment and predict programmed cell death protein 1/programmed cell death-ligand 1 inhibitors’ effects in patients with LUAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.