Understanding and classifying Chest X-Ray (CXR) and computerised tomography (CT) images are of great significance for COVID-19 diagnosis. The existing research on the classification for COVID-19 cases faces the challenges of data imbalance, insufficient generalisability, the lack of comparative study, etc. To address these problems, this paper proposes a type of modified MobileNet to classify COVID-19 CXR images and a modified ResNet architecture for CT image classification. In particular, a modification method of convolutional neural networks (CNN) is designed to solve the gradient vanishing problem and improve the classification performance through dynamically combining features in different layers of a CNN. The modified MobileNet is applied to the classification of COVID-19, Tuberculosis, viral pneumonia (with the exception of COVID-19), bacterial pneumonia and normal controls using CXR images. Also, the proposed modified ResNet is used for the classification of COVID-19, non-COVID-19 infections and normal controls using CT images. The results show that the proposed methods achieve 99.6% test accuracy on the five-category CXR image dataset and 99.3% test accuracy on the CT image dataset. Six advanced CNN architectures and two specific COVID-19 detection models, i.e., COVID-Net and COVIDNet-CT are used in comparative studies. Two benchmark datasets and a CXR image dataset which combines eight different CXR image sources are employed to evaluate the performance of the above models. The results show that the proposed methods outperform the comparative models in classification accuracy, sensitivity, and precision, which demonstrate their potential in computer-aided diagnosis for healthcare applications.
The early detection of infection is significant for the fight against the ongoing COVID-19 pandemic. Chest X-ray (CXR) imaging is an efficient screening technique via which lung infections can be detected. This paper aims to distinguish COVID-19 positive cases from the other four classes, including normal, tuberculosis (TB), bacterial pneumonia (BP), and viral pneumonia (VP), using CXR images. The existing COVID-19 classification researches have achieved some successes with deep learning techniques while sometimes lacking interpretability and generalization ability. Hence, we propose a two-stage classification method MANet to address these issues in computer-aided COVID-19 diagnosis. Particularly, a segmentation model predicts the masks for all CXR images to extract their lung regions at the first stage. A followed classification CNN at the second stage then classifies the segmented CXR images into five classes based only on the preserved lung regions. In this segment-based classification task, we propose the mask attention mechanism (MA) which uses the predicted masks at the first stage as spatial attention maps to adjust the features of the CNN at the second stage. The MA spatial attention maps for features calculate the percentage of masked pixels in their receptive fields, suppressing the feature values based on the overlapping rates between their receptive fields and the segmented lung regions. In evaluation, we segment out the lung regions of all CXR images through a UNet with ResNet backbone, and then perform classification on the segmented CXR images using four classic CNNs with or without MA, including ResNet34, ResNet50, VGG16, and Inceptionv3. The experimental results illustrate that the classification models with MA have higher classification accuracy, more stable training process, and better interpretability and generalization ability than those without MA. Among the evaluated classification models, ResNet50 with MA achieves the highest average test accuracy of 96.32
in three runs, and the highest one is 97.06
. Meanwhile, the attention heat maps visualized by Grad-CAM indicate that models with MA make more reliable predictions based on the pathological patterns in lung regions. This further presents the potential of MANet to provide clinicians with diagnosis assistance.
If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.