Objective: To discover the possible underlying mechanism of Chlorogenic acid (CGA) in protecting against oxidative stress injury in glaucoma. Methods: LncRNA TUG1 and Nrf2 expressions were detected by qRT-PCR and Western blot. Retinal ganglion cell (RGC) viability and apoptosis were measured by MTT and flow cytometry, respectively. Reactive oxygen species (ROS) level was determined by reactive oxygen species assay kit. The interaction between lncRNA TUG1 and Nrf2 was confirmed by RNA pull-down and RIP assay. Results: IPL thickness and lncRNA TUG1 expression were significantly decreased in glaucoma mice model, and CGA treatment increased IPL thickness and lncRNA TUG1 expression. In vitro H2O2induced RGCs, RGC viability was significantly decreased, and ROS level and cell apoptosis were significantly increased. CGA up-regulated lncRNA TUG1 and Nrf2 expressions, decreased cell apoptosis and ROS production in RGCs, and increased RGCs viability. We further verified the interaction between lncRNA TUG1 and Nrf2, and proved Nrf2 was positively regulated by lncRNA TUG1. We found CGA promoted Nrf2 expression through lncRNA-TUG1, and further verified CGA protected RGCs from oxidative stress through regulating lncRNA TUG1/Nrf2. In vivo experiments showed TUG1 knockdown abrogated therapeutic effect of CGA on glaucoma. Conclusion: CGA increased RGC viability and decreased ROS level and RGC apoptosis after oxidative stress injury through lncRNA TUG1/Nrf2 pathway, which protected against glaucoma.
In order to realize automatic steering controls of rice transplanters in paddy fields, an automatic steering control algorithm is essential. In this study, combining the fuzzy control with the proportional-integral-derivative (PID) control and the kinematics model, a compound fuzzy PID controller was proposed to adjust the real time data of the PID parameters for the automatic steering control. The Kubota SPU-68C rice transplanter was then modified with the new controller. Next, an automatic steering control experimental with the modified transplanter was carried out under two conditions of linear tracking and headland turning in verifying the automatic steering effect of the transplanter in different steering angle situations. The results showed that the deviation with the new controller and the modified transplanter was acceptable, with maximum deviation in linear tracking of 7.5 cm, the maximum headland turning a deviation of 11.5 cm, and the average a deviation of less than 5 cm. In conclusion, within the allowable deviation range of the field operation of the rice transplanter, the proposed algorithm successfully realized automatic steering controls of the transplanter under different steering angles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.