Abstract.In general, when a quasi-Newton method is applied to solve a system of nonlinear equations, the quasi-Newton direction is not necessarily a descent direction for the norm function. In this paper, we show that when applied to solve symmetric nonlinear equations, a quasi-Newton method with positive definite iterative matrices may generate descent directions for the norm function. On the basis of a Gauss-Newton based BFGS method [D. H. Li and M. Fukushima, SIAM J. Numer. Anal., 37 (1999), pp. 152-172], we develop a norm descent BFGS method for solving symmetric nonlinear equations. Under mild conditions, we establish the global and superlinear convergence of the method. The proposed method shares some favorable properties of the BFGS method for solving unconstrained optimization problems: (a) the generated sequence of the quasi-Newton matrices is positive definite; (b) the generated sequence of iterates is norm descent; (c) a global convergence theorem is established without nonsingularity assumption on the Jacobian. Preliminary numerical results are reported, which positively support the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.