Highlights d H4K91glu is a new histone mark enriched at promoters of highly expressed genes d H4K91glu destabilizes nucleosome by affecting (H2A/H2B) and (H3/H4) 2 interaction d H4K91glu is regulated by KAT2A and Sirt7 as its ''writer'' and ''eraser,'' respectively d H4K91glu regulates chromatin structure and dynamics in response to DNA damage
Chemical probes of epigenetic ‘readers’ of histone posttranslational modifications (PTMs) have become powerful tools for mechanistic and functional studies of their target proteins in normal physiology and disease pathogenesis. Here we report the development of the first class of chemical probes of YEATS domains, newly identified ‘readers’ of histone lysine acetylation (Kac) and crotonylation (Kcr). Guided by the structural analysis of a YEATS-Kcr complex, we developed a series of peptide-based inhibitors of YEATS domains by targeting a unique π-π>-π >stacking interaction at the proteins’ Kcr recognition site. Further structure optimization resulted in the selective inhibitors preferentially binding to individual YEATS-containing proteins including AF9 and ENL with submicromolar affinities. We demonstrate that one of the ENL YEATS-selective inhibitors, XL-13m, engages with endogenous ENL, perturbs the recruitment of ENL onto chromatin, and synergizes the BET and DOT1L inhibition-induced down-regulation of oncogenes in MLL-rearranged acute leukemia.
Articular cartilage defect repair is a problem that has long plagued clinicians. Although mesenchymal stem cells (MSCs) have the potential to regenerate articular cartilage, they also have many limitations. Recent studies have found that MSC-derived exosomes (MSC-Exos) play an important role in tissue regeneration. The purpose of this study was to verify whether MSC-Exos can enhance the reparative effect of the acellular cartilage extracellular matrix (ACECM) scaffold and to explore the underlying mechanism. The results of in vitro experiments show that human umbilical cord Wharton's jelly MSC-Exos (hWJMSC-Exos) can promote the migration and proliferation of bone marrow-derived MSCs (BMSCs) and the proliferation of chondrocytes. We also found that hWJMSC-Exos can promote the polarization of macrophages toward the M2 phenotype. The results of a rabbit knee osteochondral defect repair model confirmed that hWJMSC-Exos can enhance the effect of the ACECM scaffold and promote osteochondral regeneration. We demonstrated that hWJMSC-Exos can regulate the microenvironment of the articular cavity using a rat knee joint osteochondral defect model. This effect was mainly manifested in promoting the polarization of macrophages toward the M2 phenotype and inhibiting the inflammatory response, which may be a promoting factor for osteochondral regeneration. In addition, microRNA (miRNA) sequencing confirmed that hWJMSC-Exos contain many miRNAs that can promote the regeneration of hyaline cartilage. We further clarified the role of hWJMSC-Exos in osteochondral regeneration through target gene prediction and pathway enrichment analysis. In summary, this study confirms that hWJMSC-Exos can enhance the effect of the ACECM scaffold and promote osteochondral regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.