We study an impulsive delay differential predator–prey model with Holling type II functional response. The stability of the trivial equilibrium is analyzed by means of impulsive Floquet theory providing a sufficient condition for extinction. Using coincidence degree theory we show the existence of positive periodic solutions. The system is then analyzed numerically, revealing that the presence of delays and impulses may lead to chaotic solutions, quasi-periodic solutions, or multiple periodic solutions. Several simulations and examples are presented.
By introducing impulsive biological control strategy, the dynamic behaviors of the two-prey one-predator model with defensive ability and Holling type-II functional response are investigated. By using Floquet's Theorem and the small amplitude perturbation method, we prove that there exists an asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical minimum value, and permanence conditions (that is, the impulsive period is greater than some critical maximum value) are established via the method of comparison involving multiple Liapunov functions. It is shown that our impulsive control strategy is more effective than the classical one. Furthermore, the effect of impulsive perturbations on the unforced continuous system is studied. From simulations, we find that the system has more complex dynamic behaviors and is dominated by periodic, quasi-periodic, and chaotic solutions.
The threshold of a stochastic SIRS model with vertical transmission and saturated incidence is investigated. If the noise is small, it is shown that the threshold of the stochastic system determines the extinction and persistence of the epidemic. In addition, we find that if the noise is large, the epidemic still prevails. Finally, numerical simulations are given to illustrate the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.