This study was to verify the effects of chitosan oligosaccharides (COS) on intestinal integrity, oxidative status, and inflammatory response in a heat-stressed rat model. A total of 24 male Sprague Dawley rats were randomly divided into 3 treatment: CON, the control group; HS, the heat stress group; HSC, the heat stress group with 200 mg/kg COS. Rats in the HS and HSC group exposed to a cyclical heat stress for 7 consecutive days. The CON and HS group provided basal diet, and the HSC group provided the same diet with 200 mg/kg COS. Compared with the HS group, rats in the HSC group had lower serum diamine oxidase and D-lactate acid level, higher villus height of jejunum and ileum, lower malondialdehyde (MDA) content in duodenum, jejunum, and ileum mucosa, higher glutathione peroxidase (GSH-Px), catalase (CAT) and total antioxidant capacity (T-AOC) activity in duodenum mucosa, higher T-AOC activity in jejunum mucosa, and higher glutathione (GSH) level in ileum mucosa. Compared with the HS group, rats in the HSC group had higher interleukin-10 (IL-10) level, but lower tumor necrosis factor-α (TNF-α) level in duodenum, jejunum, and ileum mucosa. These results indicated that COS may alleviate intestinal damage under heat stress condition, probably by modulating intestinal inflammatory response and oxidative status.
The purpose of this study was to evaluate the effects of fucoidan dietary supplementation on growth performance, organs’ relative weight, serum anti-oxidation markers, immune function indices and intestinal morphology in weaned kids. A total of 60 2-month-old weaned castrated male kids (Chuanzhong black goat) were used for this 30-day experiment and randomly allocated to four groups. The control group (CON) fed a basal diet, while the other three groups were provided with the same diet further supplemented with fucoidan at 0.1%, 0.3% or 0.5%, namely, F1, F2 and F3 groups, respectively. The results indicated that dietary fucoidan supplementation significantly increased (p < 0.05) the activity of catalase (CAT) when compared to the CON group on day 15. Moreover, the addition of fucoidan at 0.3% and 0.5% significantly increased (p < 0.05) the activities of glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD). On day 30, dietary fucoidan supplementation significantly reduced (p < 0.05) the feed conversion rate (FCR), contents of tumor necrosis-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), while it significantly increased (p < 0.05) the activity of total superoxide dismutase (T-SOD), the content of immunoglobulin G (IgG) and the villus height (VH) of the duodenum. Moreover, dietary 0.3% and 0.5% fucoidan supplementation significantly increased (p < 0.05) the villus height (VH) of the jejunum and ileum and significantly reduced (p < 0.05) the crypt depth (CD) of ileum. In conclusion, dietary fucoidan had positive effects on growth performance, serum anti-oxidation, immune function and intestinal morphology of weaned kids.
The purpose of this study was to evaluate the effects of fucoidan supplementation on serum biochemical parameters, small intestinal barrier function, and cecal microbiota of weaned goat kids. A total of 60 2-month-old weaned castrated male goat kids (Chuanzhong black goat) were used in this 30-day experiment. The goat kids were randomly divided into four groups: a control group (CON) fed the basal diet, and three other groups supplemented with 0.1%, 0.3%, and 0.5% fucoidan in the basal diet (denoted as F1, F2, and F3 groups, respectively). The results indicated that dietary fucoidan supplementation decreased (p < 0.05) the activity of lactate dehydrogenase (LDH) and the content of glucose (GLU) as measured on day 15. As measured on day 30, dietary fucoidan increased (p < 0.05) the content of total protein (TP) and decreased the activity of aspartate aminotransferase (AST), and supplementation with 0.3% and 0.5% fucoidan decreased (p < 0.05) the activity of LDH. Dietary fucoidan decreased (p < 0.05) the content of D-lactic acid (D-LA) and the activity of diamine oxidase (DAO). Dietary fucoidan increased (p < 0.05) the activity of catalase (CAT) in the duodenum. Dietary 0.3% and 0.5% fucoidan enhanced (p < 0.05) the activity of glutathione peroxidase (GSH-Px) in the ileum, the activity of total superoxide dismutase (T-SOD) in the jejunum and ileum, and the activity of CAT in the ileum. Dietary 0.3% and 0.5% fucoidan reduced the contents of malondialdehyde (MDA) in the duodenum, jejunum, and ileum and the content of hydrogen peroxide (H2O2) in the duodenum. Dietary fucoidan increased (p < 0.05) the content of secretory immunoglobulin A (sIgA) in the duodenum. Supplementation of 0.3% and 0.5% fucoidan upregulated (p < 0.05) the gene expression of ZO-1 and claudin-1 in the duodenum, jejunum, and ileum, and dietary supplementation of 0.3% and 0.5% fucoidan upregulated (p < 0.05) the gene expression of occludin in the jejunum and ileum. The 16S rRNA high-throughput sequencing results showed that at the phylum level, dietary fucoidan increased (p < 0.05) the abundance of Bacteroidetes while decreasing (p < 0.05) the abundance of Firmicutes. At the genus level, dietary 0.3% and 0.5% fucoidan increased (p < 0.05) the abundances of Unspecified_Ruminococcaceae, Unspecified_Bacteroidale, Unspecified_Clostridiales, and Akkermansia. In conclusion, dietary fucoidan supplementation had positive effects on intestinal permeability, antioxidant capacity, immunity function, tight junctions, and the cecal microflora balance in weaned goat kids.
This paper explores the effects of fucoidan on the frequency of diarrhea, colon morphology, colon antioxidant status, cytokine content, short-chain fatty acids, and microflora of cecal contents in early weaned lambs in order to provide a reference for the intestinal health of young ruminants. Fucoidan is a natural active polysaccharide extracted from kelp and other large brown algae. It has many biological effects, such as improving immunity, nourishing the stomach and intestines, and anti-tumor properties. This study investigated the effects of fucoidan supplementation in milk replacer on the large intestine's ability to act as an intestinal barrier in weaned lambs. With six duplicate pens and one lamb per pen, a total of 24 weaned lambs (average starting body weight of 7.32 ± 0.37 kg) were randomly assigned to one of four milk replacer treatments. Four concentrations of fucoidan supplementation (0, 0.1, 0.3, and 0.6% dry matter intake) were employed to investigate the effects of fucoidan on cecal fermentation and colon microbial organization. The test period lasted 37 days (1 week before the test and 1 month after the test), and lamb cecal contents and colon organization were collected for examination. In addition, the fecal status of all lambs was observed and recorded daily, allowing us to calculate the incidence of diarrhea in weaned lambs. The findings demonstrated that fucoidan may significantly increase the concentration of short-chain fatty acids (propionic acid and butyric acid) in the cecal digesta of weaned lambs. In weaned lambs, 16S rDNA testing showed that fucoidan at 0.3–0.6% (dry matter intake) was beneficial for boosting the variety of the intestinal bacteria and modifying the relative abundance of a few bacterial strains. In addition, fucoidan enhanced colon antioxidant and immune functions and decreased the diarrhea rate to relieve weaning stress. This result demonstrates that milk replacer supplementation with fucoidan contributes to the improvement in the large intestinal health of weaned lambs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.